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Abstract—This paper presents a model-based approach for
source identification using sparse recovery techniques. In partic-
ular, given an arbitrary domain that contains a set of unknown
sources and a set of stationary sensors that can measure a
quantity generated by the sources, we are interested in predicting
the shape, location, and intensity of the sources based on a
limited number of sensor measurements. We assume a PDE
model describing the steady-state transport of the quantity inside
the domain, which we discretize using the Finite Element method
(FEM). Since the resulting source identification problem is under-
determined for a limited number of sensor measurements and
the sought source vector is typically sparse, we employ a novel
Reweighted `1 regularization technique combined with Least
Squares Debiasing to obtain a unique, sparse, reconstructed
source vector. The simulations confirm the applicability of the
presented approach for an Advection-Diffusion problem.

I. INTRODUCTION

Identifying sources from a limited number of measurements
has many important applications. For example, identifying the
source of underwater contaminants [1], [2], or leakage of haz-
ardous substances [3], [4], is significant from an environmental
protection and human-safety perspective. Source identification
techniques can also be used to enable more complex tasks
such as landmine clearing [5], or search-and-rescue missions
and crowd evacuation in the case of emergencies [6].

Model-based source identification, where a PDE describes
the transport phenomenon in a domain of interest, has been
investigated previously, especially in the context of Advection-
Diffusion models. The available methods can be classified
depending on whether the sources are assumed to be functions
with compact support in finite geometries or points in infinite
space. While the latter methods often lead to closed-form solu-
tions, the former are typically more general and can be used to
address a broader range of problems. Further classifications are
also possible depending on the number of sources, i.e., single
vs. multiple, or on the state of the transport phenomenon,
i.e., transient vs. steady-state. For example, localization of
a single point-source in a steady-state transport system is
considered in [7]. The source is assumed to be a delta or
step function and the domain is assumed semi-infinite. Based
on these assumptions, a closed-form solution for the forward
problem is presented. This solution is then used to perform the
localization task. On the other hand, localization of a single
point-source in transient transport systems is considered in
[5], [8]. The authors of [8] rely on a priori knowledge of the
possible locations of the source or knowledge of the source’s
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intensity to solve the localization problem. A different ap-
proach is followed in [5] that uses statistical signal processing
combined with closed-form solutions of the PDE transport
models for infinite and rectangular domains to perform the
source identification task.

The literature discussed above focuses on the identification
of point-sources using closed-form solutions of the PDE
transport models. Alternatively, optimization-based approaches
can also be used to solve the underlying inverse problems. The
authors of [9] use `1-norm regularization to localize multiple
instantaneous point-sources in a transient heat transfer system.
A similar approach is followed in [10] where a sparse recovery
method is formulated to identify multiple point-sources under
steady-state conditions.

Assumptions of point-sources in infinite domains or as-
sumptions on the intensity and number of these sources
typically impose restrictions on the generality and applica-
bility of the resulting methods. Sources of arbitrary shape in
finite geometries are considered in [11], where a thresholding
method based on sensitivity analysis of the objective functional
is proposed to estimate the most likely location of the sources.
The authors in [12] use FEM along with total variation
regularization to solve the identification problem. Both of these
methods appear to have low accuracy for small number of
measurements.

In this paper, we address the identification problem for
multiple sources with compact support inside an arbitrary
domain at steady-state. After discretization of the PDE using
the FEM, we obtain a linear model connecting the source
and the measurable quantity. Then, our goal is to estimate the
discrete source vector using a limited number of measurements
inside the domain. The measurements are static and are taken
at a small number of grid points of the FE mesh where the
sensors are located. Assuming that the area occupied by the
sources is much smaller compared to the whole domain, as is
often the case in practice, the desired unknown source vector
will be sparse which motivates the use of sparse reconstruction
to estimate it. In this paper, we propose a novel algorithm
to recover the solution of the source identification problem.
Our method combines Reweighted `1 regularization (see, e.g.,
[13]) with Debiasing (see, e.g., [14]), to enhance the quality
of the recovery. The use of FEM allows to handle different
PDE models, multiple continuous sources, and arbitrary do-
main shapes, significantly increasing the applicability of our
method. We show the effectiveness of the proposed method
with simulations for an Advection-Diffusion problem.

The rest of this paper is organized as follows: In Section II,
we discuss the Advection-Diffusion PDE under consideration
and its discretization using FEM, and we formulate the pro-
posed source identification problem as a sparse optimization



problem. Section III, is devoted to the description of the
proposed identification algorithm, its ingredients, and stopping
criterion. In Section IV, numerical simulations are presented,
while Section V contains the concluding remarks.

II. PROBLEM FORMULATION

Let Ω ⊂ Rl be the domain of interest (1 ≤ l ≤ 3), and
assume the presence of sources is modeled by a function,
f : Ω → R+, with compact support in the domain. 1 Let
c : Ω→ R be the measurable quantity, such as concentration,
generated by the sources. Moreover, let the velocity at which
this quantity is transported via advection be v ∈ Rl, and
D ∈ R+ be the diffusivity of the medium. Under the
steady-state assumption and applying a Dirichlet condition to
the boundaries of the domain ∂Ω, the governing Advection-
Diffusion PDE will be of the form

∇ · (D∇c)−∇ · (vc) + f = 0, (1)
c = 0 on ∂Ω.

Discretizing the PDE model (1) using FEM with n grid
points we get the approximate model

Kĉ = Rf̂ , (2)

where the coefficient matrix K and the matrix R are n × n
sparse matrices whose dimension depends on the refinement
of the mesh; see, e.g., [15]. In (2), f̂ and ĉ are the n
dimensional source and concentration vectors, respectively,
that satisfy the linear model (2). Assuming that the mesh is
fine enough and n is large, we can neglect the discretization
error and approximate the continuous variables c and f with
their discrete peers ĉ and f̂ [15].

Consider now a set of m (m� n) stationary sensors in the
domain that measure the concentration ĉ at the grid points of
the FE mesh. Let y ∈ Rn be the vector of the measurements
and assume that these measurements are contaminated by
noise so that

y = Q(ĉ + e), (3)

where e ∈ Rn is the noise vector and Q is a n × n,
diagonal, binary, indicator matrix with ones at entries corre-
sponding to the measurement locations and zero elsewhere.
Then, y has m nonzero entries corresponding to the sensor
locations. Moreover, assume that the noise is white, i.e.,
e ∼ N (0 , σ2I), where I denotes the identity matrix. Then,
the source identification problem we address in this paper can
be stated as follows:

Problem 1. Given a possibly noisy measurement vector y ∈
Rn, calculate a vector x ∈ Rn that approximates the true
source vector f̂ as close as possible.

Assuming any prediction of the source vector x in place
of f̂ , we can solve (2) for the corresponding concentrations

1For the problem considered here, we assume that sources are strictly
positive functions. In general, sources can also be negative in the case of sinks.
Sinks can appear, e.g., in the presence of chemical reactions that consume a
contaminant. The treatment of the problem in that case is similar.

K−1Rx and then left-multiply by the indicator matrix Q to
obtain the concentrations at the sensor locations as QK−1Rx.
Then, to solve Problem 1 we need to determine the source
vector x for which the concentrations QK−1Rx match a
given measurement vector y, i.e., we need to solve

QK−1Rx = y (4)

for the sought source vector x. Since the number of mea-
surements m is much smaller than the number of unknowns
n (m � n), the system of equations (4) is severely under-
determined and does not have a unique solution. Moreover,
due to the presence of noise in the measurement vector y, any
solution x that satisfies the linear model (4) exactly, does not
have a real physical meaning. Therefore, equation (4) cannot
be used directly to solve the source identification problem.
Instead, we employ an optimization-based approach that seeks
the source vector x for which the concentrations QK−1Rx
best approximate a given noisy measurement vector y in a
least-squares sense. In particular, we formulate the following
problem

min
x≥ 0

||Ax− y||22, (5)

where A = QK−1R. Note that the true source vector f̂ is
nonnegative, thus we introduce the constraint x ≥ 0 in (5).

Since we do not measure the concentration at every grid
point of the FE mesh, the least-squares problem (5) does
not have a unique minimizer. To obtain a formulation that
accepts a unique global minimizer as a solution, we introduce
a regularization term in the objective and, therefore, we rewrite
problem (5) as

min
x≥ 0

1

2
||Ax− y||22 + λR(x), (6)

where R(x) is the regularization term that ensures a unique
solution for the original problem (5), and λ is the regular-
ization parameter which balances between the data-fit and
the regularization; see, e.g., [16]. Smaller values of λ mean
more emphasis on the data-fit. Obviously, different choices
of the regularization function R(x) will result in different
solutions and this choice along with an appropriate value for λ
is essential for acceptable recovery. The most popular choices
for the regularization function are the norms ||·||0, ||·||1, ||·||2,
and the Total Variation TV (·). This regularization approach
penalizes discontinuities and is observed to preserve sharp
edges [17, section 8.6].

Since the area covered with sources is typically much
smaller compared to the whole domain Ω, we expect the
discretized source vector f̂ to be sparse. This motivates the
use of the `0-norm regularization to obtain a sparse solution
to Problem 1. To avoid the non-convex and, therefore, com-
putationally intractable nature of the resulting `0 regularized
problem, we instead use a reweighted `1-norm approach that
has been recently proposed for the solution of sparse recon-
struction problems [13]. The idea is to solve several weighted
`1-regularized problems iteratively and appropriately update



Algorithm 1 Sparse Source Identification
Require: Measurements y, matrix A, and variance σ2;
Require: Regularization parameter λ;

1: Initialize the iteration index k = 1 and let x1 = 0 and
w1 = cons.;

2: while the algorithm has not converged do
3: Solve for x̂k the weighted `1-regularized problem

min
x̂k

0.5||Ax̂k − y||22 + λwT
k x̂k

s.t. x̂k ≥ 0,

for fixed weights wk and using xk as the initial value;
4: Solve for x̄k the debiasing problem

min
x̄k

0.5||Ax̄k − y||22

s.t. [x̄k]i = 0 if [x̂k]i = 0 and [x̄k]i ≥ 0 if [x̂k]i 6= 0,

using x̂k as the initial value;
5: Set xk+1 = x̄k;
6: Update the weights wk+1 using equation (8);
7: Check the convergence criterion for xk+1;
8: k ← k + 1;
9: end while

the weights of the regularization terms after every iteration.
In particular, using the weighted `1-norm as a regularization
function, problem (6) becomes

min
x≥ 0

1

2
||Ax− y||22 + λwTx, (7)

where w is a vector of weights. After every solution of
problem (7) the vector w is updated as

wi =
1

xi + ε
(8)

for all entries i = 1, . . . , n, where 0 < ε� min{xi|xi 6= 0}.
Our proposed solution to Problem 1 combines sparse recon-

struction (7) with data fit (5) in an iterative procedure, which
we describe next.

III. SPARSE SOURCE IDENTIFICATION ALGORITHM

Before discussing the details of the proposed algorithm, we
reformulate problem (7) to the following Bound Constrained
Quadratic Program:

min
x≥ 0

{J(x) =
1

2
xTΛx− cTx}, (9)

where

Λ = ATA , b = ATy, and c = b− λw. (10)

For a fixed vector of weights w, problem (9) is convex and
efficient numerical methods exist to solve it. The algorithm
we propose in this work is an iterative procedure, every
iteration of which consist of three main phases. Phase I solves
problem (9) for a fixed vector of weights w. Phase II, called
debiasing, solves the least-squares problem (5), trusting the

Algorithm 2 Weighted `1 Regularization Phase
Require: Parameters β ∈ (0, 1), µ ∈ (0, 0.5), αmin, αmax;
Require: Vector of weights wk;

1: Initialize the iteration index s = 1 and let x̂1
k = xk;

2: while the algorithm has not converged do
3: Compute the step size α using (12);
4: Set α = mid(αmin, α, αmax);
5: Compute

x̂s+1
k = (x̂s

k − αs∇J(x̂s
k))+,

where αs is the first element of the sequence
{α, αβ, αβ2, ...} satisfying

J(x̂s+1
k ) ≤ J(x̂s

k)− µ∇J(x̂s
k)T (x̂s

k − x̂s+1
k );

6: Check the convergence criterion defined in (13);
7: s← s+ 1;
8: end while
9: Set x̂k = x̂s

k;

sparsity pattern obtained from the first phase. Finally, phase III
updates the vector of weights w according to equation (8). As
discussed before, reweighting based on the current information
about the solution enhances sparsity [13]. On the other hand,
debiasing emphasizes the data-fit term and, therefore, improves
on the reconstruction [14]. In Section IV we show that the
proposed integrated method significantly enhances accuracy
of the reconstruction.

Our method, containing the three phases, is shown in
Algorithm 1. In this algorithm, the subscript k denotes the
iteration index and the notation [·]i denotes the i-th component
of a vector. The vector xk is the estimation of the true source
vector f̂ at iteration k, which also serves as an initial value
for phase I in the next iteration of Algorithm 1. Line 3 in
Algorithm 1 corresponds to phase I, which solves problem (9)
for variable x̂k, given a fixed vector of weights wk and using
xk as an initial value. Line 4, corresponds to phase II, which
solves the least-squares problem (5) for variables x̄k using
the solution x̂k of phase I as an initial value. Finally, line 6
corresponds to phase III, which updates the vector of weights
wk+1 for the next iteration k + 1 based on the solution x̄k

of the least-squares problem (5) at the current iteration k. In
the following subsections, each of the three phases and the
stopping criterion for Algorithm 1 are discussed.

A. Weighted `1 Regularization

The first phase of Algorithm 1 is equivalent to problem (9)
for fixed weights. To solve this problem, we use a gradient
descent backtracking line-search method along with a gradient
projection method; see, e.g., [14]. The proposed algorithm
is an iterative procedure shown in Algorithm 2. We denote
by s the iteration index of this algorithm and by x̂s

k the
resulting iterates corresponding to iteration k of Algorithm
1. In Algorithm 2, the function mid(a, b, c) = a if b < a < c,
and is used to prevent very small or large steps, which may



lead to divergence. Moreover, the operator (·)+ denotes the
projection of the solution to the nonnegative orthant and is
used to maintain feasibility.

The gradient projection method, used in Algorithm 2, is
a fast active set method for quadratic problems with bound
constraints; see, e.g., [18, section 16.7]. The main idea of this
method is to project the gradient to the feasible set and then
minimize the objective function in two successive steps. For
the case of nonegativity constraints, this method consists of
the following two steps corresponding to lines 3, 4, and 5 of
Algorithm 2:

(i) Project the gradient so that for a small Cauchy step, the
solution stays in the feasible box (nonnegative orthant),
i.e.,

[gs]i =

{
[∇J(x̂s

k)]i, if [x̂s
k]i > 0 or [∇J(x̂s

k)]i < 0,
0, otherwise,

(11)
for all i = 1, . . . , n, where [·]i denotes the i-th entry of
a vector. Then minimize the univariate function J(x̂s

k−
αgs) along the descent direction −gs, which leads to
the closed-form solution

α =
gT
s gs

gT
s Λgs

. (12)

This step serves as a good starting point for each
iteration of algorithm 2 and prevents large infeasibilities.

(ii) Solve problem (9) using a backtracking line-search
method, with −∇J(x̂s

k) as the search direction, while
projecting the iterations of this line-search onto the
nonnegative orthant to maintain feasibility.

The function J(·) above denotes the objective function defined
in (9) and Λ is the Hessian of the objective function defined
in (10).

Since problem (9) falls in the class of Linear Complemen-
tary Problems [19], we can use the following stopping criterion
for Algorithm 2

||min{x̂s
k,∇J(x̂s

k)}||2 < tol1, (13)

for some user specified tolerance tol1. Note that the minimum
in this equation is taken element-wise.

B. Debiasing

During the debiasing phase, our algorithm trusts the sparsity
pattern obtained from phase I, discussed in section III.A, and
finds the best possible fit of the measurement vector y that
respects this sparsity pattern. Therefore, during the debiasing
phase, we solve the least-squares problem (5) subject to the
constraints that fix the zero elements of the solution. To reach
this goal, we use a modified version of the Conjugate Gradient
method, as described in Algorithm 3. We denote by s the
iteration index of this algorithm and by x̄s

k the resulting iterates
corresponding to iteration k of Algorithm 1.

In this algorithm, the residual vector at iteration s is defined
as rs = Λx̄s

k−b, where the Hessian matrix Λ and the vector b
are the same as defined by (10) for problem (9). For a detailed
derivation of the CG method see, e.g., [18, section 5.1]. In the

Algorithm 3 Debiasing Phase
1: Initialize the iteration index s = 1 and let x̄1

k = x̂k and
r1 = Λx̄1

k − b;
2: Calculate r̄1 from (14) and set p1 = −r̄1;
3: while the algorithm has not converged do
4: Check the convergence criterion ||r̄s||22 < tol2;
5: Calculate

αs =
r̄Ts r̄s

pT
s Λps

,

x̄s+1
k = (x̄s

k + αsps)+,

rs+1 = rs + αsps;

6: Calculate r̄s+1 from (14) and let

βs+1 =
r̄Ts+1r̄s+1

r̄Ts r̄s
,

ps+1 = −r̄s+1 + βs+1ps;

7: s← s+ 1;
8: end while
9: Set x̄k = x̄s

k;

modified CG method proposed in Algorithm 3, the values of
the modified residual r̄s are updated by

[r̄s]i =

{
[rs]i, if [x̄1

k]i 6= 0,
0, otherwise, (14)

for all i = 1, . . . , n, where [·]i denotes the i-th entry of a
vector. Equation (14) manipulates the residual vector rs to
prevent the zero entries of the initial solution x̄1

k to change. In
order to speed up the debiasing Algorithm 3, we use gradient
projection as in (11) to compute the residual rs.

Since the measurements y are noisy, obtaining a perfect
least-squares fit does not have a real physical meaning.
Moreover, the conjugate gradient method itself serves as an
iterative regularization process and needs proper termination,
as discussed in [17, section 6.3]. Therefore, Algorithm 3 needs
to terminate when the fit reaches a tolerance level tol2 which
depends on the variance σ2 of the noise components. To
estimate the appropriate value for tol2, we first provide an
expression for the expected value of ||r̄||22.

Proposition 1. If the solution vector equals the true source
vector, i.e., x = f̂ , and the noise vector defined in (3) is
white with distribution e ∼ N (0 , σ2I), then for the modified
residual vector r̄ defined by (14), we have

E{||r̄||22} = σ2tr(QATA). (15)

Proof: The proof follows from the formula for the expec-
tation of the quadratic form.

If the problem is dominated by diffusion, i.e., if v = 0, with
constant diffusivity D and if the FE mesh is structured, then
the nonzero entries of A are identical except for the ones that
correspond to the grid points at the boundaries of the domain
Ω. Consequently, we can use the approximation tr(QA2) ≈



m[A]Tj [A]j , where, m is the number of sensor measurements
and [A]j is the j-th column of A, where j = bn2 c is the
index of the middle column of A and b·c is the floor function.
On the other hand, for more general cases this approximation
is not valid. We compensate for this approximation by using
a safety factor κ ≥ 1 and, therefore, propose the following
general rule to specify a value for tol2:

tol2 = κmσ2[A]Tj [A]j . (16)

C. Regularization Parameter and Stopping Criterion

In this section, we discuss the selection of the initial con-
stant vector of weights w1, and the regularization parameter
λ for Algorithm 1. Moreover, we discuss a stoping criterion
for this algorithm.

During the first iteration, when there is no information
available about the sparsity in hand, Algorithm 1 starts by
using constant regularization weights which are equal for all
components. The value λw1 = (0.05||ATy||∞)1, is known
to serve as a good starting value for the regularization weights
[16], where ||x||∞ = max

i
|xi| and 1 = [1 . . . 1]T .

During the following iterations, an appropriate value for
the regularization parameter λ is necessary. Since Algorithm
1 is initialized with the zero vector, i.e., x1 = 0, the value
of the regularization term in (7) varies from zero at the first
iteration to ideally ||f̂ ||0 upon convergence. On the other hand,
the value of the data-fit term varies from ||y||22 in the first
iteration to ideally ||e||22. As a result, the value of the data-fit
term changes for different measurement vectors y, while the
value of regularization term only depends on the sparsity of the
source vector and is independent of y. In order to incorporate
the effect of y in the regularization term, we use the heuristic
value

λ = α||y||2, (17)

which works well in practice for a sufficiently large range of
problem parameters, e.g., size and geometry.

Since the sparsity pattern of the solution is preserved when
the iterates have converged to the optimal point, we can use
sparsity as a sufficient stopping criterion of Algorithm 1 at
line 7. The number of iterations screened for stopping depends
on the relative number of unknowns and measurements n/m,
and the noise level measured by the variance σ2 of the noise
components.

IV. NUMERICAL SIMULATIONS

In this section, we provide two numerical simulations,
using MATLAB, to support the performance of the proposed
algorithm and draw some conclusions based on the results.
We refer to the method introduced in this paper as RWDL1.
For the purpose of simulations, the domain is assumed to be
a square area with unit length and an array of m sensors,
distributed equidistantly in the domain, is used to gather the
measurements y.

In the following simulations, the error in the estimated
source vector x, compared to the true value f̂ , is calculated as
err = ||x− f̂ ||2/||f̂ ||2, and the signal to noise ratio (SNR) is

defined as SNR = 10 log(σ2
signal/σ

2
noise), where σ2

signal and
σ2
noise are the variances of the measurement vector y and the

noise vector e, respectively. Moreover, sparsity is defined as
sp = k/n and sampling-ratio is defined as sr = m/k, where
k = ||f̂ ||0 and m is the number of sensor measurements.

A. Comparison with other Methods
In this section, we compare four regularization methods,

`2, `1, TV , and RWDL1, for a diffusion-dominated problem
(D = 1 and v = 0) with n = 41× 41 = 1681 unknowns. For
the `1 and TV regularization methods, popular implementa-
tions from [16] and [20] are used and tuning is done to get the
best performance. The support of the source function, defined
in equation (1), forms two rectangular, constant regions. The
discretized source vector f̂ has k = 61 nonzero entries.
Therefore, the source vector is very sparse and sp = 3.63%.

In Table I, the results for different numbers of sensors and
measurement noise levels are shown. The results show that
RWDL1 outperforms the other methods in terms of accuracy.
Except for the `2-regularization for which there exists a closed-
form solution, the other methods are iterative. Among these
methods, RWDL1 takes the shortest time to solve the problem.
It is notable that for the case of a 7 × 7 sensor array, the
problem is solved with under-sampling (sr < 1).

For each case, an approximation of the tolerance tol2 is
obtained using equation (16) with κ = 1. However, in order to
improve on the performance, further tuning is required. Note
that in the extreme case of noise-free data, the ideal value
of tol2 is zero. Therefore, using smaller values of tol2 for
this case can result in more accurate solutions at the cost of
longer simulation times. For instance, setting tol2 = 10−30 for
the case of 7 × 7 sensor array, the error value reduces from
17.86% to 2.16%, while the required simulation time increases
from 1.38s to 3.41s. For large-scale problems the increase in
time becomes more significant. Another important observation
obtained from Table I is that the value of α defined in equation
(17) is almost constant, i.e., α ≈ 0.2, for the source strength
used in the current experiment for which max(f̂) = 104.

B. Advection-Diffusion Transport
For this experiment, a FE mesh with n = 51× 51 = 2601

unknowns is considered. A constant, rectangular source with
intensity 1.5 × 104 is used which results in a discrete source
vector f̂ with 66 nonzero entries (sp = 2.54%). Moreover, an
array of 7 × 7 sensors is assumed to take the measurements
(sr < 1). The transport phenomenon happens via advection
with v = [−10 10]T , and diffusion with D = 1.

For the noise-free case, with α = 0.35 and tol2 = 10−30,
the estimation error is 11.44%. On the other hand, for the noisy
case, with σ = 0.1 and SNR = 47.79, the error is 26.56%.
The values α = 0.35 and tol2 = 10−8 are used (equation (16)
gives tol2 = 10−7). Figure 1 depicts the recovered source
vector for the noisy measurements.

V. CONCLUSION

In this paper, we considered the problem of model-based
source identification using the sparse recovery techniques.



TABLE I
COMPARISON WITH OTHER POPULAR REGULARIZATION METHODS

`2 `1 TV RWDL1

m σ SNR err(%) t(s) err(%) t(s) err(%) t(s) α tol2 err(%) t(s)

7× 7

0 ∞ 60.00 0.09 52.22 5.67 35.09 7.88 0.2 10−16 17.86 1.38

0.1 50.56 60.03 0.08 52.22 6.43 36.05 7.61 0.2 10−8 27.85 2.05

1 28.15 62.67 0.09 58.61 6.63 44.64 8.08 0.3 10−4 34.11 1.03

10× 10

0 ∞ 45.55 0.10 41.70 13.1 12.93 7.75 0.1 10−16 0.64 2.55

0.1 48.74 44.82 0.09 41.34 13.3 17.54 7.54 0.25 10−7 9.90 1.84

1 29.84 61.41 0.09 63.23 12.94 57.95 8.40 0.2 10−3 37.50 1.90
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Fig. 1. Plot of the solution of advection-diffusion identification problem in
the presence of noise with SNR = 47.79. The reconstruction error is 26.56%.

Given a domain with unknown sources inside it, we proposed
an algorithm to determine the number and characteristics of
these sources. We used a PDE-model to describe the transport
of the measurable quantity generated by the sources. Then,
we discretized the PDE-model using FEM which gives the
flexibility to deal with different models, multiple sources with
compact support, and arbitrary domains. Since for limited
number of measurements the problem is under-determined and
based on the fact that the discretized source vector is sparse,
we used a reweighted `1-regularization technique combined
with a debiasing phase to solve the identification problem.
We demonstrated the effectiveness of our proposed method
in the numerical simulations. We showed that our method
outperforms some popular regularization approaches that are
often used in the literature.
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