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Abstract—In this paper we propose a distributed algorithm
for optimization problems that involve a separable, possibly non-
convex objective function subject to convex local constraints and
linear coupling constraints. The method is based on the Accel-
erated Distributed Augmented Lagrangians (ADAL) algorithm
that was recently developed by the authors to address convex
problems. Here, we extend this line of work in two ways. First,
we establish convergence of the method to a local minimum
of the problem, using assumptions that are common in the
analysis of non-convex optimization methods. To the best of our
knowledge this is the first work that shows convergence to local
minima specifically for a distributed augmented Lagrangian (AL)
method applied to non-convex optimization problems; distributed
AL methods are known to perform very well when used to
solve convex problems. Second, we propose a more general
and decentralized rule to select the stepsizes of the method.
This improves on the authors’ original ADAL method, where
the stepsize selection used global information at initialization.
Numerical results are included to verify the correctness and
efficiency of the proposed distributed method.

Index Terms—Distributed optimization, non-convex optimiza-
tion, augmented Lagrangian.

I. INTRODUCTION

MANY applications in areas as diverse as wireless com-
munications, machine learning, artificial intelligence,

power systems, computational biology, logistics, finance and
statistics involve very large datasets that are obtained, stored,
and retrieved in a decentralized manner. Within these areas, a
significant number of problems involving, e.g., cellular phone
networks, sensor networks, multi-agent robotics, power grids,
and the Internet, also possess a network structure wherein
processors, sensors, actuators, and controllers need to coop-
erate in a distributed fashion over geographically disparate
locations, based only on local information and communication.
The increasing size and complexity, and the local nature of
information that is particular to these problems has created a
need for efficient distributed computation methods.

In this paper we are particularly interested in distributed
optimization algorithms. Such methods have been used re-
cently to address a wide range of modern day problems
involving wired and wireless communication networks [1]–
[3], multi-agent robotic networks [4, 5], machine learning [6],
power distribution systems [7], image processing [8], model
predictive control [9], statistics [10], and logistics [11].
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We propose a distributed algorithm to solve the following
class of constrained optimization problems

min

N∑
i=1

fi(xi)

subject to
N∑
i=1

Aixi = b,

xi ∈ Xi, i = 1, 2, . . . , N,

(1)

where, for every i ∈ I = {1, 2, . . . , N}, the function
fi : Rni → R is twice continuously differentiable, Xi ⊆ Rni

denotes a nonempty closed, convex subset of ni-dimensional
Euclidean space, and Ai is a matrix of dimension m× ni.

Problem (1) models situations where a set of N decision
makers, henceforth referred to as agents, need to determine
local decisions xi ∈ Xi that minimize a collection of lo-
cal cost functions fi(xi), while respecting a set of affine
constraints

∑N
i=1 Aixi = b that couple the local decisions

between agents. In previous work [12, 13], we presented
the Accelerated Distributed Augmented Lagrangians (ADAL)
method to solve such problems in a distributed fashion, when
the objective functions fi are convex but not necessarily
differentiable. ADAL is a primal-dual iterative scheme based
on the augmented Lagrangian (AL) framework [14, 15]. In
ADAL, every agent is assumed to know its local problem
parameters fi, Ai, Xi, and is also responsible for determining
its own decision variables xi. Each iteration of ADAL con-
sists of three steps. First, every agent solves a local convex
optimization problem based on a separable approximation of
the AL, that utilizes only locally available variables. Then,
the agents update and communicate their primal variables
to neighboring agents. Here, the communication neighbors
of agent i are all those agents j that are coupled in the
same constraints as i, i.e., the communication requirements
between the agents are determined by the structure of the
(static) coupling constraint set

∑N
i=1 Aixi = b. Finally, in

the last step the dual variables are updated in a distributed
fashion based on the new values of the primal variables; the
Lagrange multiplier of the j-th constraint is updated based on
communicated information from those agents whose decisions
are coupled in this constraint, i.e., those i for which [Ai]j 6= 0.
The computations at each step are performed in parallel. It
was shown in [16] that ADAL has a worst-case O(1/k)
convergence rate, where k denotes the number of iterations.
Moreover, a stochastic convergence framework for ADAL
was established in [13] for convex constrained optimization
problems that are subject to noise corruption and uncertainties.
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In this paper we extend ADAL in two ways. First, under
assumptions that are common in the study of non-convex
optimization methods, we prove the convergence of ADAL
to a local minimum of problem (1) when the local cost
functions fi are non-convex. To the best of our knowledge,
this is the first published work that formally establishes the
convergence of a distributed augmented Lagrangian method
for non-convex optimization problems. Second, we propose
a way to select the stepsizes used in the algorithm that is
more general compared to [12]. Specifically, it was shown in
[12] that ADAL converges to the optimal solution of (1) if the
stepsizes satisfy a certain condition that requires knowledge of
the global structure of the constraint set at initialization. Here,
we lift this requirement for global information and, instead,
define m stepsizes associated with each one of the m coupling
constraints in (1); each stepsize must adhere to a condition
that requires only local information from the corresponding
constraint. It is worth noting that these two contributions are
independent from each other, meaning that convergence of
the non-convex ADAL method can still be shown using the
stepsizes from [12], and, similarly, convergence of the convex
ADAL method can be shown using the stepsizes proposed in
this paper.

A. Related Literature

The existing literature on distributed optimization methods
mostly focuses on convex problems. The classic approach is
that of dual decomposition and is based on Lagrangian duality
theory [15, 17, 18]. Dual methods are simple and popular,
however, they suffer from exceedingly slow convergence rates
and require strict convexity of the objective function.

The main drawbacks of simple dual decomposition methods
are alleviated by utilizing the augmented Lagrangian (AL)
framework, which has recently received considerable attention
as a most efficient approach for distributed optimization in
determistic settings; see, e.g., [6, 12, 19]–[23]. The ADAL
method [12] considered in this paper belongs in this class of
distributed AL algorithms, along with the Alternating Direc-
tions Method of Multipliers (ADMM) [6], and the Diagonal
Quadratic Approximation (DQA) [20] methods. A distributed
AL algorithm similar to ADAL that solves deterministic
convex problems of the form (1) has been proposed in [22].
The main difference between [22] and [12] lies in the step-
size choice; in [22] the stepsize is determined by the total
number of agents in the problem, while in [12] the stepsize
is determined by the number of agents coupled in the “most
populated” constraint, which naturally leads to larger stepsizes
in most cases. Another pertinent method can be found in
[23] that also incorporates Bregman divergence factors into
the local subproblems and at each iteration only a randomly
selected subset of the agents perform updates. Finally, in [24] a
similar algorithm to ADAL is proposed, which has a different
dual update step, and also uses the additional assumptions that
the matrices Ai are mutually near-orthogonal and have full
column-rank.

Apart from AL methods, alternative algorithms for
distributed convex optimization include Newton methods

[25]–[27], projection-based approaches [28, 29], accelerated-
gradient algorithms [30]–[32], online methods [33, 34],
primal-dual perturbation approaches [35], reduced-
communication algorithms [36], and even continuous-time
approaches [37]. On the other hand, there exist only a few
works on non-convex distributed optimization methods,
such as Parallel Variable Distribution schemes [38]–[40],
Successive Convex Approximation algorithms [41], dual
subgradient approaches [42], and Fast-Lipschitz methods
[43].

In relevant literature regarding distributed AL methods for
non-convex problems, it has been observed that the ADMM
can converge in scenarios with non-convex objective functions;
see [44]–[47] for some examples. Nevertheless, the only
published work that provides some theoretical justification
for such observations is found in [48]. There, the authors
propose a distributed AL method that provably converges to
a stationary point of the non-convex problem, for a certain
class of problems and for sufficiently large values of the
regularization parameter. The differences between [48] and
the current paper are that, for the class of problems considered
here, [48] proposes a different algorithm where the agents per-
form computations sequentially at each iteration, while in our
method the computations are performed in parallel. Moreover,
the authors of [48] prove convergence to a stationary point
of the non-convex problem provided that the regularization
parameter is chosen large enough, while in this paper we prove
convergence to a local minimum, under the additional assump-
tion that the initialization point is sufficiently close to a locally
optimal solution. Other relevant work includes [49] where the
authors provide conditions under which certain distributed AL
schemes for non-convex problems are guaranteed to converge,
and also [50] where an elaborate distributed AL algorithm with
modified gradients and Hessian approximations is proposed,
similar in spirit to sequential quadratic programming methods.

The rest of this paper is organized as follows. In section
II we discuss some essential facts regarding duality and
the augmented Lagrangian framework. We also provide a
description of the ADAL method that utilizes the new local
stepsizes, and discuss how it compares to the method using the
global stepsizes presented in [12]. In section III we analyze
the convergence of ADAL for problems of the form (1) under
the local stepsize selection rule. Finally, Section IV contains
numerical results that validate the effectiveness and efficiency
of the proposed algorithm.

II. PRELIMINARIES

We denote

F (x) =

N∑
i=1

fi(xi)

where x = [x>1 , . . . ,x
>
N ]> ∈ Rn with n =

∑N
i=1 ni.

Furthermore, we denote A = [A1 . . .AN ] ∈ Rm×n. The

constraint
N∑
i=1

Aixi = b of problem (1) takes on the form

Ax = b. Associating Lagrange multipliers λ ∈ Rm with that
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Algorithm 1 Augmented Lagrangian Method (ALM)

Set k = 1 and define initial Lagrange multipliers λ1.
1. For a fixed vector λk, calculate x̂k as a solution of the

problem:
min
x∈X

Λρ(x,λ
k). (4)

2. If the constraints
∑N
i=1 Aix̂

k
i = b are satisfied, then stop

(optimal solution found). Otherwise, set :

λk+1 = λk + ρ

(
N∑
i=1

Aix̂
k
i − b

)
, (5)

Increase k by one and return to Step 1.

constraint, the Lagrange function is defined as

L(x,λ) = F (x) + 〈λ,Ax− b〉 (2)

=

N∑
i=1

Li(xi,λ)− 〈b,λ〉,

where Li(xi,λ) = fi(xi)+〈λ,Aixi〉, and 〈·, ·〉 denotes inner
product. Then, the dual function is defined as

g(λ) = inf
x∈X

L(x,λ) =

N∑
i=1

gi(λ)− 〈b,λ〉,

where X = X1 ×X2 · · · × XN , and

gi(λ) = inf
xi∈Xi

[
fi(xi) + 〈λ,Aixi〉

]
.

The dual function is decomposable and this gives rise to
various decomposition methods addressing the dual problem,
which is defined by

max
λ∈Rm

N∑
i=1

gi(λ)− 〈b,λ〉. (3)

Dual methods suffer from well-documented disadvantages,
the most notable ones being their exceedingly slow conver-
gence rates and the requirement for strictly convex objec-
tive functions. These drawbacks can be alleviated by the
augmented Lagrangian framework [14, 15]. The augmented
Lagrangian associated with problem (1) is given by

Λρ(x,λ) = F (x) +
〈
λ,Ax− b

〉
+

ρ

2
‖Ax− b‖2,

where ρ > 0 is a penalty parameter. We recall the standard
augmented Lagrangian method (ALM), also referred to as the
“Method of Multipliers” in the literature [14, 15], in Alg. 1.

The convergence of the augmented Lagrangian method is
ensured when problem (3) has an optimal solution indepen-
dently of the initialization. Under convexity assumptions and
a constraint qualification condition, every accumulation point
of the sequence {xk} is an optimal solution of problem
(1), cf. [14]. Furthermore, the augmented Lagrangian method
exhibits convergence properties also in a non-convex setting,
assuming that the functions fi, i = 1, . . . , N are twice contin-
uously differentiable and the strong second-order conditions
of optimality are satisfied [14]. This fact combined with the

Algorithm 2 Accelerated Distributed Augmented Lagrangians
(ADAL)

Set k = 1 and define initial Lagrange multipliers λ1 and initial
primal variables x1.

1. For every i ∈ I, determine x̂ki as the solution of the
following problem:

min
xi∈Xi

Λiρ
(
xi,Axk,λk

)
. (7)

2. Set for every i ∈ I

Aix
k+1
i = Aix

k
i + T

(
Aix̂

k
i −Aix

k
i

)
. (8)

3. Set:

λk+1 = λk + ρT

(
N∑
i=1

Aix
k+1
i − b

)
, (9)

increase k by one and return to Step 1.

known efficiency of distributed AL methods in convex settings
provide a strong motivation to develop distributed non-convex
AL schemes, such as the one proposed here.

A. The ADAL algorithm

The ADAL method is based on defining the local augmented
Lagrangian function Λiρ : Rni×Rn×Rm → R for every agent
i ∈ I = {1, . . . , N} at each iteration k, according to

Λiρ
(
xi,Axk,λk

)
= fi(xi) +

〈
λk,Aixi

〉
(6)

+
ρ

2
‖Aixi +

j 6=i∑
j∈I

Ajx
k
j − b‖2,

where ρ > 0 is a scalar penalty parameter defined by the
user. Each iteration of ADAL is comprised of three steps: i) a
minimization step of all the local augmented Lagrangians with
respect to the primal variables, ii) an update step for the primal
variables, and iii) an update step for the dual variables. The
computations at each step are performed in a parallel fashion,
so that ADAL resembles a Jacobi-type algorithm; see [15] for
more details on Jacobi and Gauss-Seidel type algorithms. The
ADAL method is summarized in Alg. 2.

At the first step of each iteration, each agent minimizes
its local AL subject to its local convex constraints. This
computation step requires only local information. To see this,
note that the variables Ajx

k
j , appearing in the penalty term of

the local AL (6), correspond to the local primal variables of
agent j that were communicated to agent i for the optimization
of its local Lagrangian Λiρ. With respect to agent i, these are
considered fixed parameters. The penalty term of each Λiρ can
be equivalently expressed as

‖Aixi +
∑j 6=i

j∈I
Ajx

k
j − b‖2

=
∑m

l=1

([
Aixi

]
l
+
∑j 6=i

j∈I

[
Ajx

k
j

]
l
− bl

)2
,

where
[
Aixi

]
l

denotes the l-th entry of the vector Aixi. The
above penalty term is involved only in the minimization com-
putation (7). Hence, for those l such that [Ai]l = 0, the terms
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∑j 6=i
j∈I

[
Ajx

k
j

]
l
−bl are just constant terms in the minimization

step, and can be excluded. Here, [Ai]l denotes the l-th row of
Ai and 0 stands for a zero vector of proper dimension. This
implies that subproblem i needs access only to the decisions[
Ajx

k
j

]
l

from all subproblems j 6= i that are involved in
the same constraints l as i. Moreover, regarding the term
〈λ,Aixi〉 in (6), we have that 〈λ,Aixi〉 =

∑m
j=1 λj [Aixi]j .

Hence, we see that, in order to compute (7), each subproblem i
needs access only to those λj for which [Ai]j 6= 0. Intuitively
speaking, each agent needs access only to the information that
is relevant to the constraints that this agent is involved in.

After the local optimization steps have been carried out, the
second step consists of each agent updating its primal variables
by taking a convex combination with the corresponding values
from the previous iteration. This update depends on a vector
of stepsizes τ ∈ Rm, where each entry τj is the stepsize cor-
responding to constraint j. For notational purposes, we define
the diagonal, square matrix T of dimension m according to

T = diag
(
τ1, . . . , τm

)
, (10)

so that the diagonal entries of T are the stepsizes for each
constraint. To select the appropriate values for τ , we first
need to define the degree of a constraint for problems of the
form (1). Specifically, for each constraint j = 1, . . . ,m, let qj
denote the number of individual decision makers i associated
with this constraint. That is, qj is the number of all i ∈ I
such that [Ai]j 6= 0. Then, to guarantee the convergence of
ADAL we need to select τj ∈ (0, 1

qj
), according to the analysis

presented in Section III.
Note that, at the local update steps (8), each agent i does not

update the primal variables xi, but rather the products Aix
k
i .

Using a more rigorous notation, we could define an auxiliary
variable yki = Aix

k
i , so that the update (8) takes the form

yk+1
i = yki +T

(
Aix̂

k
i −yki

)
. To avoid introducing additional

notation, we have chosen not to introduce the variables yki and,
instead, we directly update the terms Aix

k
i , slightly abusing

notation.
The third and final step of each ADAL iteration consists of

the dual update. This step is distributed by structure, since the
Lagrange multiplier of the j-th constraint is updated according
to λk+1

j = λkj + ρτj
(∑N

i=1

[
Aix

k+1
i

]
j
− bj

)
, which implies

that the udpate of λj needs only information from those i for
which [Ai]j 6= 0. We can define, without loss of generality, a
set M⊆ {1, . . . ,m} of agents that perform the dual updates,
such that an agent j ∈ M is responsible for the update of
the dual variables corresponding to a subset of the coupling
constraint set Ax = b (without overlapping agents). For
example, if the cardinality of M is equal to the number of
constraints m, then each agent j ∈ M is responsible for the
update of the dual variable of the j-th constraint. In practical
settings, M can be a subset of I, or it can be a separate set
of agents, depending on the application.

Remark 1: In the ADAL method presented in [12], the
second step of the algorithm has the form

xk+1
i = xki + τ(x̂ki − xki ),

where the stepsize τ is a scalar that must satisfy τ ∈ (0, 1q ),
for q = max1≤j≤m qj . Intuitively, q is the number of agents

coupled in the “most populated” constraint of the problem.
Obtaining the parameter q clearly requires global information
of the structure of the constraint set at initialization, which
may hinder the distributed nature of the algorithm. To remedy
this problem, in this paper we propose the update rule (8),
where we update the products Aix

k
i ∈ Rm, instead of just

the variables xki ∈ Rni , using a vector stepsize T ∈ Rm×m
(diagonal matrix for notational purposes) that can be locally
determined. To see why (8) requires only local information,
note that every agent i needs to know only the qj’s that
correspond to the constraints that this agent is involved in.
Analogous arguments hold for the dual update step (9), also.

III. CONVERGENCE OF ADAL
In order to prove convergence of ADAL to a local minimum

of (1), we need the following four assumptions:
(A1) The sets Xi ⊆ Rni , i = 1, . . . , N are nonempty, closed

and convex.
(A2) The functions fi : Rni → R, i ∈ I = {1, 2, . . . , N} are

twice continuously differentiable on Xi.
(A3) The subproblems (7) are solvable.
(A4) There exists a point x∗ satisfying the strong second order

sufficient conditions of optimality for problem (1) with
Lagrange multipliers λ∗.

The assumptions (A1), (A2), and (A4) are common and
are used in the convergence proof of the standard augmented
Lagrangian method (ALM) for non-convex optimization prob-
lems, cf. [14]. Assumption (A4) implies that there exist
Lagrange multipliers λ∗ ∈ Rm that satisfy the first order
optimality conditions for problem (1) at the feasible point x∗,
provided that a constraint qualification condition is satisfied at
x∗, i.e.,

∇F (x∗) + A>λ∗ ∈ NX (x∗),

where we recall that x = [x>1 , . . . ,x
>
N ]> ∈ Rn, F (x) =∑

i fi(xi), and A = [A1 . . .AN ] ∈ Rm×n. Here, we use
NX (x) to denote the normal cone to the set X at point x
[14], i.e.,

NX (x) = {h ∈ Rn : 〈h,y − x〉 ≤ 0, ∀ y ∈ X}.

The strong second order sufficient conditions of optimality for
problem (1) at a point x∗ imply that〈
s,∇2F (x∗)s

〉
> 0, for all s 6= 0, such that As = 0,

c.f. [14], Lemma 4.32.
Assumption (A3) is satisfied if for every i = 1, . . . , N ,

either the set Xi is compact, or the function fi(xi)+ ρ
2‖Aixi−

c‖2 is inf-compact for any vector c. The latter condition,
means that the level sets of the function are compact sets,
implying that the set {xi ∈ Xi : fi(xi) + ρ

2‖Aixi− c‖2 ≤ α}
is compact for any α ∈ R.

Define the residual r(x) ∈ Rm as the vector containing
the amount of all constraint violations with respect to primal
variable x, i.e.,

r(x) =

N∑
i=1

Aixi − b. (11)
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Define also the auxiliary variables

λ̂
k

= λk + ρr(x̂k), (12)

and

λ̄
k

= λk + ρ(I−T)r(xk), (13)

where I is the identity matrix of size m.
The basic idea to show convergence of our method is to

introduce the Lyapunov (merit) function

φ(xk,λk) =

N∑
i=1

ρ
∥∥Aix

k
i −Aix

∗
i

∥∥2
T−1 +

1

ρ

∥∥λ̄k − λ∗
∥∥2
T−1 ,

(14)

where we use the notation
∥∥x∥∥

M
=
√
x>Mx. We will show

in Theorem 1 that this Lyapunov function is strictly decreasing
during the execution of the ADAL algorithm (7)-(9), given that
the stepsizes τj satisfy the condition 0 < τj < 1/qj for all
j = 1, . . . ,m. Then, in Theorem 2 we show that the strictly
decreasing property of the Lyapunov function (14) implies the
convergence of the primal and dual variables to their respective
optimal values defined at a local minimum of problem (1).

We begin the proof by utilizing the first order optimality
conditions of all the subproblems (7) in order to derive some
necessary inequalities.

Lemma 1: Assume (A1)–(A4). Then, the following in-
equality holds:∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+

1

ρ

(
λ̂
k
− λ∗

)>(
λk − λ̂

k
)

(15)

≥ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(∑
j 6=i

(Ajx
k
j −Ajx̂

k
j )
)
,

where λk, λ̂
k
, x̂ki , and xkj are calculated at iteration k.

Proof: The first order optimality conditions for problem
(7) imply the following inclusion for the minimizer x̂ki

0 ∈ ∇fi(x̂ki )+A>i λ
k+ρA>i

(
Aix̂

k
i +
∑
j 6=i

Ajx
k
j−b

)
+NXi

(x̂ki ).

(16)
We infer that there exist normal elements zki ∈ NXi

(x̂ki ) such
that we can express (16) as follows:

0 = ∇fi(x̂ki )+A>i λ
k+ρA>i

(
Aix̂

k
i +
∑
j 6=i

Ajx
k
j −b

)
+zki .

(17)
Taking inner product with x∗i − x̂ki on both sides of this
equation and using the definition of a normal cone, we obtain〈

∇fi(x̂ki ) + A>i λ
k

+ ρA>i

(
Aix̂

k
i +

∑
j 6=i

Ajx
k
j − b

)
,x∗i − x̂ki

〉
= 〈−zki ,x∗i − x̂ki 〉 ≥ 0. (18)

Using the variables λ̂
k

defined in (12), we substitute λk in
(18) and obtain:

0 ≤
〈
∇fi(x̂ki ) + A>i

[
λ̂
k
− ρ
(∑

j

Ajx̂
k
j − b

)
+ ρ
(
Aix̂

k
i +

∑
j 6=i

Ajx
k
j − b

)]
,x∗i − x̂ki

〉
=
〈
∇fi(x̂ki ) + A>i

[
λ̂
k

+ ρ
(∑
j 6=i

Ajx
k
j −

∑
j 6=i

Ajx̂
k
j

)]
,x∗i − x̂ki

〉
(19)

The assumption (A4) entails that the following first-order
optimality conditions are satisfied at the point (x∗,λ∗), i.e.,

0 ∈ ∇fi(x∗i )+A>i λ
∗+NXi

(x∗i ) for all i = 1, . . . , N. (20)

After using the definition of the normal cone and taking inner
product with x̂ki −x∗i on both sides of this equation (as before),
we obtain the equivalent expression for the above inclusion〈
∇fi(x∗i ) + A>i λ

∗, x̂ki − x∗i

〉
≥ 0, for all i = 1, . . . , N.

(21)
Adding together (19) and (21), we obtain the following in-
equalities for all i = 1, . . . , N :〈
∇fi(x∗i )−∇fi(x̂ki ) + A>i (λ∗ − λ̂

k
)

− ρA>i
(∑
j 6=i

Ajx
k
j −

∑
j 6=i

Ajx̂
k
j

)
, x̂ki − x∗i

〉
≥ 0.

Adding the inequalities for all i = 1, . . . , N and rearranging
terms, we get:∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+
(
λ∗ − λ̂

k
)>(∑

i

(Aix̂
k
i −Aix

∗
i )
)

≥ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(∑
j 6=i

(Ajx
k
j −Ajx̂

k
j )
)
.

Substituting
∑N
i=1 Aix

∗
i = b and

∑N
i=1 Aix̂

k
i −b = 1

ρ (λ̂
k
−

λk) from (12), we conclude that∑
i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+

1

ρ

(
λ̂
k
− λ∗

)>(
λk − λ̂

k
)

≥ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(∑
j 6=i

(Ajx
k
j −Ajx̂

k
j )
)
,

as required.

The following lemma is similar to Lemma 2 presented in
[12]. The difference is that here the statement of the lemma
includes also the gradient terms of the objective functions; in
the convex case studied in [12] these terms are factored out
due to the monotonicity property of the convex subdifferential.
The proof of the lemma is given in the Appendix.
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Lemma 2: Under assumptions (A1)–(A4), the following
relation holds:∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λk − λ∗

)>(
λk − λ̂

k
)

(22)

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

ρ
‖λ̂

k
− λk‖2

+
(
λ̂
k
− λk

)>(
r(xk)− r(x̂k)

)
.

In the next lemma, we obtain a modified version of (22)
whose right-hand side is nonnegative.

Lemma 3: Under the assumptions (A1)–(A4), the follow-
ing relation holds∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

(23)

≥ ρ
∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρ

∥∥r(x̂k)
∥∥2
T− 1

2D
.

where D = diag
(
q1τ

2
1 , . . . , qmτ

2
m

)
, and the variable λ̄

k is
defined in (13).

Proof: The first term in the left hand side of (22) that
includes the gradients of the objective functions will not be
altered in what follows, so we neglect it temporarily for
simplicity of notation. Add the term

1

ρ

(
ρ(I−T)r(xk)

)>(
λk − λ̂

k
)

= ρ
(

(I−T)r(xk)
)>(

− r(x̂k)
)
,

to both sides of inequality (22). Recalling the definition of λ̄k

from (13), we get:

ρ
∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

≥ ρ
∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρ‖r(x̂k)‖2 (24)

+
(
λ̂
k
− λk

)>(
r(xk)− r(x̂k)

)
− ρ
(

(I−T)r(xk)
)>

r(x̂k).

Consider the term
(
λ̂
k
− λk

)>(
r(xk) − r(x̂k)

)
− ρ

(
(I −

T)r(xk)
)>

r(x̂k) in the right hand side of (24). We manipulate

it to get:(
λ̂
k
− λk

)>(
r(xk)− r(x̂k)

)
− ρ
(

(I−T)r(xk)
)>

r(x̂k)

= ρr(x̂k)>
(
r(xk)− r(x̂k)

)
− ρ
(

(I−T)r(xk)
)>

r(x̂k)

= ρr(x̂k)>
(
r(xk)− r(x̂k)

)
− ρ
(

(I−T)
[
r(xk)− r(x̂k) + r(x̂k)

])>
r(x̂k)

= ρ
(
T r(x̂k)

)>(
r(xk)− r(x̂k)

)
− ρr(x̂k)>(I−T)r(x̂k)

= ρ
(
T r(x̂k)

)>(∑
i

Ai(x
k
i − x̂ki )

)
− ρr(x̂k)>(I−T)r(x̂k). (25)

Substituting back in (24), we obtain:

ρ
∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

≥ ρ
∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρr(x̂k)>T r(x̂k) (26)

+ ρ
(
T r(x̂k)

)>(∑
i

Ai(x
k
i − x̂ki )

)
.

Using the basic inequality ‖a‖22 + 2ab + ‖b‖22 ≥ 0 for any

vectors a and b, each of the terms ρ
(
T r(x̂k)

)>(
Ai(x

k
i −

x̂ki )
)

in the right hand side of (26) can be bounded below by
considering

ρ
(
T r(x̂k)

)>(
Aix

k
i −Aix̂

k
i

)
= ρ

m∑
j=1

(
τj [r(x̂k)]j

)([
Ai(x

k
i − x̂ki )

]
j

)
≥ − ρ

2

m∑
j=1

([
Ai(x

k
i − x̂ki )

]2
j

+ τ2j [r(x̂k)]2j

)
,

where
[
·
]
j

denotes the j-th entry of a vector. Note, however,
that some of the rows of Ai might be zero. If [Ai]j = 0,
then it follows that [r(x̂k)]j

[
Ai(x

k
i − x̂ki )

]
j

= 0. Hence,
denoting the set of nonzero rows of Ai as Qi, i.e., Qi =
{j = 1, . . . ,m : [Ai]j 6= 0}, we can obtain a tighter lower

bound for each term ρ
(
T r(x̂k)

)>(
Aix

k
i −Aix̂

k
i

)
as

ρ
(
T r(x̂k)

)>(
Aix

k
i −Aix̂

k
i

)
≥ − ρ

2

∑
j∈Qi

([
Ai(x

k
i − x̂ki )

]2
j

+ τ2j [r(x̂k)]2j

)
. (27)

Now, recall that qj denotes the number of non-zero blocks
[Ai]j over all i = 1, . . . , N , in other words, qj is the number
of decision makers i that are involved in the constraint j. Then,
summing inequality (27) over all i, we observe that each term
τ2j [r(x̂k)]2j is included in the summation at most qj times.
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This observation leads us to the bound

ρ
∑
i

(
T r(x̂k)

)>(
Aix

k
i −Aix̂

k
i

)
≥ −ρ

2

(∑
i

‖Ai(x
k
i − x̂ki )‖2 +

m∑
j=1

qjτ
2
j [r(x̂k)]2j

)
,

or, equivalently,

ρ
∑
i

(
T r(x̂k)

)>(
Aix

k
i −Aix̂

k
i

)
≥ −ρ

2

∑
i

‖Ai(x
k
i − x̂ki )‖2 − ρ

2
r(x̂k)>Dr(x̂k), (28)

where D = diag
(
q1τ

2
1 , . . . , qmτ

2
m

)
. Finally, we substitute (28)

into (26) to get

ρ
∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

≥ ρ

2

∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρ

∥∥r(x̂k)
∥∥2
T− 1

2D
.

After reinstating the gradient terms that we have neglected
thus far, we obtain the required result.

Next, our goal is to find a lower bound for the gradient
terms appearing in (23). To do so, let C denote any diagonal
matrix with strictly positive diagonal entries, and consider the
function

Gρ(x) = F (x) +
ρ

2
x>A>CAx, (29)

where we recall that x = [x>1 , . . . ,x
>
N ]> ∈ Rn, F (x) =∑

i fi(xi), and A = [A1 . . .AN ] ∈ Rm×n. In the next
lemmas, we will make use of the fact that, for sufficiently large
ρ, the function Gρ(x) is strongly convex in a neighborhood
around the optimal solution x∗ of (1). For this, we will make
use of the following result.

Lemma 4 ( [14], Lemma 4.28): Assume that a symmetric
matrix Q of dimension n and a matrix B of dimension m×n
are such that〈

x,Qx
〉
> 0, for all x 6= 0 such that Bx = 0.

Then, there exists ρ0 such that for all ρ > ρ0 the matrix
Q + ρB>B is positive definite.

Using Lemma 4, we can obtain an important relation
involving the gradient terms that appear in (23).

Lemma 5: Assume (A1)–(A4). Then, for any diagonal
matrix C with strictly positive diagonal entries, there exists

some κ > 0 such that the following relation holds

ρ
∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

(30)

≥ ρ

2

∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρ

∥∥r(x̂k)
∥∥2
T− 1

2D−C

+ κ‖x̂k − x∗‖2,

provided that ρ is sufficiently large, and that for all iterations
k the terms λk+ρ

∑
j 6=i(Ajx

k
j −Ajx

∗
j ) are sufficiently close

to λ∗ for all i = 1, . . . , N .
Proof: From assumption (A4), we have that there exists

a point x∗ satisfying the strong second order sufficient con-
ditions of optimality for problem (1). These conditions imply
that

〈
s,∇2F (x∗)s

〉
> 0, for all s 6= 0, such that As = 0.

Now, combine this with the result of Lemma 4 for

Q = ∇2F (x∗), and B = C1/2A.

It follows that there exists ρ0 such that for all ρ > ρ0
the matrix ∇2F (x∗) + ρA>CA is positive definite with
some modulus κ0 > 0. Moreover, from assumption (A2) the
matrix ∇2F (x) + ρA>CA (note that this matrix is defined
w.r.t. x instead of x∗) is also continuous, hence there exists
sufficiently large ρ such that, for all x ∈ X sufficiently
close to x∗, i.e., for ‖x − x∗‖ ≤ β, all the eigenvalues of
∇2F (x)+ρA>CA lie above some κ > 0. To see this, observe
that from Schwarz’s theorem [51] we have that the continu-
ous differentiability assumption (A2) means that the Hessian
matrix H(x) = ∇2F (x) is symmetric within X . According
to eigenvalue perturbation theory [52], the symmetry of the
Hessian entails that for a perturbation δH of the matrix H ,
the perturbation δε of its smallest eigenvalue ε is bounded by
δH , i.e., |δε| ≤

∥∥δH∥∥. By the continuity of the Hessian, we
infer that there exists some neighborhood ‖x−x∗‖ ≤ β around
x∗ such that |δε| < κ0, which in turn means that within this
neighborhood the matrix ∇2F (x)+ρA>CA remains positive
definite with a modulus at least κ = κ0 − |δε| > 0.

Since the positive definite matrix ∇2F (x) + ρA>CA is
the Hessian of the function Gρ(x) = F (x) + ρ

2x
>A>CAx

and X is a convex closed set, we infer that, for sufficiently
large ρ, there exists some β such that the function Gρ(x) is
strongly convex with modulus κ for every x belonging in the
set {x ∈ X : ‖x−x∗‖ ≤ β}. From the definition of strongly
convex functions, we get that the following holds for all x that
are sufficiently close to x∗:

(
∇Gρ(x)−∇Gρ(x∗)

)>(
x− x∗

)
≥ κ‖x− x∗‖2.
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For the term
(
∇Gρ(x)−∇Gρ(x∗)

)>(
x− x∗

)
, we have(

∇Gρ(x)−∇Gρ(x∗)
)>(

x− x∗
)

=
(
∇F (x)−∇F (x∗) + ρA>CA(x− x∗)

)>(
x− x∗

)
=
(
∇F (x)−∇F (x∗) + ρA>C(Ax− b)

)>(
x− x∗

)
=
∑
i

(
∇fi(xi)−∇fi(x∗i )

)>(
xi − x∗i

)
+ ρr(x)>Cr(x)

where we have used the fact that Ax∗ = b, and r(x) =
Ax− b. It follows that∑

i

(
∇fi(xi)−∇fi(x∗i )

)>(
xi − x∗i

)
+ ρr(x)>Cr(x)

≥ κ‖x− x∗‖2. (31)

Now, substitute x = x̂k in (31), and add it to (23). We get the
following relation

ρ
∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

≥ ρ

2

∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρr(x̂k)>

(
T− 1

2
D−C

)
r(x̂k)

+ κ‖x̂k − x∗‖2,

which is the required result.
Note that, in order to substitute x = x̂k in (31), it is

necessary that the x̂k are sufficiently close to x∗ at iteration
k, i.e., that they belong to the set {x̂ ∈ X : ‖x̂− x∗‖ ≤ β}.
To see when this condition holds, note that the local AL for
each i can be expressed as

Λiρ
(
xi,Axk,λk

)
= fi(xi)

+
〈
λk + ρ

∑
j 6=i

(Ajx
k
j −Ajx

∗
j ),Aixi

〉
(32)

+
ρ

2
‖Aixi +

∑
j 6=i

Ajx
∗
j − b‖2 +

ρ

2
‖
∑
j 6=i

(Ajx
k
j −Ajx

∗
j )‖2

+ ρ
〈∑
j 6=i

(Ajx
k
j −Ajx

∗
j ),
∑
j 6=i

Ajx
∗
j − b

〉
,

where we have added the zero terms
∑
j 6=iAjx

∗
j−
∑
j 6=iAjx

∗
j

in the penalty term of the AL, and expanded it. The last two
terms can be disregarded when minimizing with respect to xi.
Recalling a well known result on the sensitivity analysis of
augmented Lagrangians, c.f. [14, 53, 54], we have that, given
assumptions (A1)–(A4), if ρ is sufficiently large and the terms
ξi = λk +ρ

∑
j 6=i(Ajx

k
j −Ajx

∗
j ) are sufficiently close to λ∗

for all i = 1, . . . , N , then supx̂i

∥∥x̂i − x∗i
∥∥ = O(

∥∥ξi − λ∗
∥∥)

holds, i.e., the x̂ki will be sufficiently close to x∗i , as required
for (31) to hold.

We are now ready to prove the key result pertaining to the
convergence of our method. We will show that the function
φ defined in (14) is a strictly decreasing Lyapunov function

for ADAL. The results from Lemmas 3 and 5 will help us
characterize the decrease of φ at each iteration.

Theorem 1: Assume (A1)–(A4). Assume also that ρ is
sufficiently large, and that the initial iterates x1,λ1 are chosen
such that φ(x1,λ1) is sufficiently small. If the ADAL method
uses stepsizes τj satisfying

0 < τj <
1

qj
, ∀ j = 1, . . . ,m,

then, the sequence {φ(xk,λk)}, with φ(xk,λk) defined in
(14), is strictly decreasing.

Proof: First, we show that the dual update step (9) in
the ADAL method results in the following update rule for the
variables λ̄

k, which are defined in (13):

λ̄
k+1

= λ̄
k

+ ρTr(x̂k) (33)

Indeed,

λk+1 = λk + ρTr(xk+1)

λk+1 + ρr(xk+1) = λk + ρTr(xk+1) + ρr(xk+1)

λk+1 + ρ(I−T)r(xk+1) = λk + ρr(xk+1)

λ̄
k+1

= λk + ρ(I−T)r(xk) + ρTr(x̂k)

λ̄
k+1

= λ̄
k

+ ρTr(x̂k),

as required.
We define the progress at each iteration k of the ADAL

method as

θk(T) = φ(xk,λk)− φ(xk+1,λk+1).

We substitute λ̄
k in the formula for calculating the function

φ and use relation (33). The progress θk(T) can be evaluated
as follows:

θk(T) =

N∑
i=1

ρ
∥∥Ai(x

k
i − x∗i )

∥∥2
T−1 +

1

ρ

∥∥λ̄k − λ∗
∥∥2
T−1

−
N∑
i=1

ρ
∥∥Ai(x

k+1
i − x∗i )

∥∥2
T−1 −

1

ρ

∥∥λ̄k+1 − λ∗
∥∥2
T−1 . (34)

First, consider the term
∥∥Ai(x

k+1
i − x∗i )

∥∥2
T−1 . We have that

ρ
∥∥Ai(x

k+1
i − x∗i )

∥∥2
T−1

= ρ
(
Aix

k+1
i −Aix

∗
i

)>
T−1

(
Aix

k+1
i −Aix

∗
i

)
= ρ

(
Aix

k
i −Aix

∗
i

)>
T−1

(
Aix

k
i −Aix

∗
i

)
+ ρ

(
T(Aix̂

k
i −Aix

k
i )
)>

T−1
(
T(Aix̂

k
i −Aix

k
i )
)

+ 2ρ
(
Aix

k
i −Aix

∗
i

)>
T−1

(
T(Aix̂

k
i −Aix

k
i )
)
,

where we substituted Aix
k+1
i = Aix

k
i + T(Aix̂

k
i − Aix

k
i )

from (8) and expanded the terms. The last equation in the
above can be written as

ρ
∥∥Ai(x

k+1
i − x∗i )

∥∥2
T−1

= ρ
∥∥Ai(x

k
i − x∗i )

∥∥2
T−1 + ρ

∥∥Aix̂
k
i −Aix

k
i

∥∥2
T

+ 2ρ
(
Aix

k
i −Aix

∗
i

)>(
Aix̂

k
i −Aix

k
i

)
. (35)
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Similarly, for the term
∥∥λ̄k+1 − λ∗

∥∥2
T−1 , we have

1

ρ

∥∥λ̄k+1 − λ∗
∥∥2
T−1 =

=
1

ρ

(
λ̄
k+1 − λ∗

)>
T−1

(
λ̄
k+1 − λ∗

)
=

1

ρ

(
λ̄
k − λ∗ + ρTr(x̂k)

)>
T−1

(
λ̄
k − λ∗ + ρTr(x̂k)

)
=

1

ρ

∥∥λ̄k − λ∗
∥∥2
T−1 + ρ

∥∥r(x̂k)
∥∥2
T

+
2

ρ

(
λ̄
k − λ∗

)>(
ρr(x̂k)

)
, (36)

where in the second equality we have used relation (33).
Hence, substituting (35) and (36) into (34), and recalling

that λ̂
k
− λk = ρr(x̂k) we get that the progress θk(T) at

each iteration is given by

θk(T) = 2ρ
∑
i

(
Aix

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

2

ρ

(
λ̄
k − λ∗

)>(
λk − λ̂

k
)

(37)

− ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2
T
− ρ

∥∥r(x̂k)
∥∥2
T
.

The last two (quadratic) terms in (37) are always negative, due
to T being positive definite by construction. Hence, in order
to show that φ is strictly decreasing, we need to show that the
first two terms in (37) are always “more positive” than the last
two terms. This is exactly what Lemma 5 and (30) enable us
to do. In particular, using (30), we obtain a lower bound for
the first two terms in (37), which gives us that

θk(T) ≥ ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2 + ρ
∥∥r(x̂k)

∥∥2
2T−D−2C

+ 2κ‖x̂k − x∗‖2 − ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2
T
− ρ
∥∥r(x̂k)

∥∥2
T

= ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2
I−T + ρ

∥∥r(x̂k)
∥∥2
T−D−2C

+ 2κ‖x̂k − x∗‖2. (38)

The above relation suggests that we can choose T appro-
priately in order to guarantee that φ is strictly decreasing.
Specifically, it is sufficient to ensure that the matrices I − T
and T − D − 2C are positive definite. From the condition
I − T > 0, we infer that the diagonal elements of T must
be strictly less than one. To ensure that T − D − 2C > 0,
recall that D = diag

(
q1τ

2
1 , . . . , qmτ

2
m

)
by construction. Also,

according to Lemma 5, the matrix C can be any diagonal
matrix with strictly positive diagonal entries. Let C = 1

2TE,
where E = diag

(
ε1, . . . , εm

)
, and each εj , j = 1, . . . ,m is

an arbitrarily small, positive number. Then, if we can choose
T such that

τj − qjτ2j − εjτj > 0, ∀ j = 1, . . . ,m,

the diagonal matrix T−D− 2C is guaranteed to be positive
definite. The above relation has solution

τj <
1− εj
qj

, ∀ j = 1, . . . ,m. (39)

Hence, if we select τj according to (39), then θk > 0 during
the execution of ADAL, which in turn means that the sequence
{φ(xk,λk)} is strictly decreasing, as required. Since the εj can
be as small as we want, we obtain the corresponding condition
of the theorem.

Note that to arrive at (38), we have used the result of
Lemma 5, which requires that the terms λk+ρ

∑
j 6=i(Ajx

k
j −

Ajx
∗
j )−λ∗ are sufficiently close to zero for all i = 1, . . . , N

at iteration k; recall that the purpose of this condition is
to guarantee that the x̂ki will fall into the strong convexity
region of Gρ, which allows us to use (31). Suppose also
that the terms Aix

k
i − Aix

∗
i are sufficiently close to zero

for all i = 1, . . . , N at iteration k. Adding Aix
k
i −Aix

∗
i to

λk + ρ
∑
j 6=i(Ajx

k
j − Ajx

∗
j ) − λ∗, the assumption that the

λk + ρ
∑
j 6=i(Ajx

k
j − Ajx

∗
j ) − λ∗ are sufficiently close to

zero at iteration k for all i = 1, . . . , N in Lemma 5, becomes
equivalent to the condition that the terms λk + ρr(xk) − λ∗

and Aix
k
i −Aix

∗
i for all i = 1, . . . , N are sufficiently close

to zero at iteration k.
Note that λk + ρr(xk)− λ∗ is sufficiently close to zero if

and only if λk + ρ(I−T)r(xk) − λ∗ is sufficiently close
to zero at iteration k. This is because (I−T) is a finite
multiplicative factor on r(xk) and r(xk) is close to zero, since
the Aix

k
i are close to Aix

∗
i for all i = 1, . . . , N . Now, recall

the definition of φ(xk,λk) =
∑N
i=1 ρ

∥∥Aix
k
i −Aix

∗
i

∥∥2
T−1 +

1
ρ

∥∥λk +ρ(I−T)r(xk)−λ∗
∥∥2
T−1 , and observe that the terms

in the right hand side of φ(xk,λk) are exactly the terms that
we need to be sufficiently close to zero in order to apply the
result of Lemma 5. Since 0 < T < I, it follows that the
terms λk + ρ(I−T)r(xk) − λ∗ and Aix

k
i − Aix

∗
i for all

i = 1, . . . , N are sufficiently close to zero if φ(xk,λk) is
sufficiently small. To see this, observe that all terms in the
expression for φ(xk,λk) are individually upper bounded by
the value of φ(xk,λk), e.g., ‖Aix

k
i − Aix

∗
i ‖2 < ‖Aix

k
i −

Aix
∗
i ‖2T−1 ≤ 1

ρφ(xk,λk). Hence, if we choose initial values
x1,λ1 such that φ(x1,λ1) is sufficiently small, then θ1 > 0,
which implies that φ(x2,λ2) < φ(x1,λ1). Since, φ(x1,λ1)
is sufficiently small and φ(x2,λ2) is even smaller, we can
infer that the iterates λk + ρ

∑
j 6=i(Ajx

k
j −Ajx

∗
j )− λ∗ will

be sufficiently close to zero for all iterations k. Therefore, the
result of Lemma 5 can be used, as required.

Remark 2: In the statement of Theorem 1, we assume that
the initial iterates x1,λ1 are chosen such that φ(x1,λ1) is
sufficiently small. For comparison, in the convergence proof of
the standard augmented Lagrangian method (ALM) described
in Alg. 1, the assumption that the dual iterates λk are suffi-
ciently close to λ∗ for all iterations is used. Following a similar
argument as in Theorem 1, this condition holds true if the
initial values λ1 are sufficiently close to λ∗; see [14, 55, 56]
for more details. Here, we cannot simply require that the dual
variables alone are close to their optimal values. Instead, we
need to consider the terms λk+ρ

∑
j 6=i(Ajx

k
j −Ajx

∗
j ) for all

i = 1, . . . , N , due to the structure of the local ALs, cf. (32),
and the distributed nature of the algorithm. This difference
gives rise to the condition that φ(x1,λ1) is sufficiently small,
which replaces the requirement that λ1 is sufficiently close to
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λ∗ as is the case in the ALM.

We are now ready to prove the main result of this paper.

Theorem 2: Assume(A1)–(A4). Assume also that ρ is suf-
ficiently large, and that the initial iterates x1,λ1 are chosen
such that φ(x1,λ1) is sufficiently small. Then, the ADAL
method generates sequences of primal variables {x̂k} and dual
variables {λk} that converge to a local minimum x∗ of prob-
lem (1) and the corresponding optimal Lagrange multipliers
λ∗, respectively.

Proof: Relation (38) implies that

φ(xk+1,λk+1) ≤ φ(xk,λk)− ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2
I−T

− ρ
∥∥r(x̂k)

∥∥2
T−D−2C − 2κ‖x̂k − x∗‖2

Summing the above inequality for k = 1, 2, . . . , we obtain:
∞∑
k=1

[
ρ
∑
i

∥∥Aix̂
k
i −Aix

k
i

∥∥2
I−T + ρ

∥∥r(x̂k)
∥∥2
T−D−2C

+ 2κ‖x̂k − x∗‖2
]
< φ(x1,λ1) (40)

Since φ(x1,λ1) is bounded, this implies that the sequences
{r(x̂k)}, {x̂ki −x∗i }, and {Aix̂

k
i −Aix

k
i } for all i = 1 . . . , N ,

converge to zero as k →∞. It follows that {r(xk)} converges
to zero as well. By the monotonicity and boundedness proper-
ties of φ(xk,λk), we conclude that the sequence {λk} is also
convergent. We denote limk→∞ λk = µ.

From assumption (A2), the gradients of the functions fi
are continuous on Xi. Therefore, the sequences {∇fi(x̂ki )}
converge to ∇fi(x∗i ) for all i = 1, . . . , N . Passing to the limit
in equation (17), we infer that each sequence {zki } converges
to a point z̃i, i = 1, . . . , N . The mapping xi ⇒ NXi

(xi) has
closed graph and, hence, z̃i ∈ NXi

(x∗i ).
After the limit pass in (17), we conclude that

0 = ∇fi(x∗i ) + A>i µ + z̃i, ∀ i = 1 . . . , N.

Hence, µ satisfies the first order optimality conditions for
problem (1). Since x∗ is a feasible point that satisfies the
strong second order sufficient conditions of optimality for
problem (1), we conclude that ADAL generates primal se-
quences {x̂k} that converge to a local minimum x∗ of (1), and
dual sequences {λk} that converge to their optimal values λ∗

for the point x∗, as required.

Remark 3: The sufficient closeness assumption used in
this paper, cf. Lemma 5 and Theorem 1, is required to establish
strong convexity of the local ALs and, subsequently, local
convergence of the proposed distributed AL method. Analo-
gous proximity assumptions are used to show convergence of
the centralized AL method for nonconvex problems in [14].
Nevertheless, for problems where the constraint matrices Ai

are full column rank, the sufficient closeness assumption is
no longer necessary. Instead, for problems with this structure
the strong convexity of the local ALs can be established by
selecting a large enough value for ρ, which can be computed
based on bounds on the gradients of the non-convex functions

2 4 6 8 10 12 14 16

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Iterations

P
r
i
m
a
l
 
C
o
n
v
e
r
g
e
n
c
e

 

 

x
1

x
2

(a)

2 4 6 8 10 12 14 16
−0.5

0

0.5

1

IterationsR
e
s
i
d
u
a
l
 
C
o
n
v
e
r
g
e
n
c
e

 

 

residual
λ

(b)

Fig. 1. Simulation results for ADAL applied to problem (41): a) Evolution
of the primal variables x1 and x2, and b) Evolution of the dual variable λ
and the constraint residual x1 − x2.

fi at all points in the constraint space, in a spirit similar to
the analysis presented in [48].

IV. NUMERICAL EXPERIMENTS

In order to illustrate the proposed method, in this section
we present numerical results of ADAL applied to non-convex
optimization problems. The main objectives here are two.
First, we verify the correctness of the theoretical analysis
developed in Section III by showing that the proposed dis-
tributed method converges to a local minimum. We also show
that the Lyapunov function defined in (14) is indeed strictly
decreasing for all iterations, as expected. Second, we examine
how sensitive ADAL is to the choice of the user-defined
penalty coefficient ρ, and also to different initialization points.

Since the problems are non-convex, ADAL will converge
to some local minimum. To evaluate the quality of this local
minimum, we use the solution that is obtained by directly
solving the non-convex problems with a commercial nonlinear
optimization solver; we refer to that solution as “centralized”,
as we do not enforce any decomposition when using this
solver. Note that the goal here is not to compare the centralized
solution to the solution that is returned by ADAL, but rather to
establish that ADAL does not converge to trivial solutions. In
comparison, in the convex case we would compare the solution
of ADAL to the global optimal solution and show that they are
the same. The simulations were carried out in MATLAB, using
the fmincon command to solve the centralized problem, as
well as the non-convex local subproblems (7) at each iteration
of ADAL. 1 The results correspond to the ”active-set” solver
option of fmincon, which performed better than all other
options, in terms of optimality and computation time.

First, we examine a simple non-convex optimization prob-
lem with N = 2 agents that control their decision variables
x1 and x2, respectively. The problem is:

min
x1,x2

x1 · x2, s.t. x1 − x2 = 0. (41)

This problem is particularly interesting because the straight-
forward application of the popular ADMM algorithm fails to

1We note that, for the problems considered here, the fmincon solver
of Matlab returned the same solutions as other solvers such as MINOS,
LANCELOT, SNOPT, and IPOPT in AMPL for the vast majority of cases.
Since the purpose of this paper is not to compare the performance of nonlinear
optimization solvers, we have focused just on the fmincon.
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Fig. 2. Simulation results for ADAL and the centralized solver applied to
problem (42). The results correspond to 50 different initialization instances.
At each instance, the initialization point is the same for both ADAL and the
centralized solver. The red and blue squares indicate the objective function
value at the point of convergence for the centralized method and ADAL,
respectively. A blue dashed line indicates that ADAL converged to a better
(or the same) local minimum, while a red dashed line indicates the opposite.

converge, as discussed in [50]. The problem has an obvious
optimal solution at x∗1 = x∗2 = λ∗ = 0. It is shown in
[50] that initializing ADMM at x11 = x12 = 0 and λ1 6= 0
for this problem gives iterates of the form xk+1 = 0 and
λk+1 = −2λk, and we can see how the latter update produces
a diverging dual sequence. On the other hand, the proposed
ADAL method is convergent for the same initialization, as can
be seen in Fig. 1.

Next, we consider a non-convex problem with N = 6
agents, where each agent controls a scalar decision variable
xi, i = 1, . . . , 6 that is subject to box constraints. Each agent
has a different non-convex objective function and all decisions
are coupled in a single linear constraint:

min
x

cos(x1) + sin(x2) + ex3 + 0.1x34

+
1

1 + e−x5
+ 0.05(x56 − x6 − x46 + x36)

s.t. x1 + x2 + x3 + x4 + x5 + x6 = 4, (42)
− 5 ≤ xi ≤ 5, ∀ i = 1, . . . , 6.

The simulation results for this problem are depicted in Fig.
2, where we compare the solutions of ADAL and the central-
ized solver for 50 different initialization instances. For each
instance, the initialization points for each xi, i = 1, . . . , 6,
are generated by sampling from the uniform distribution with
support [−5, 5]. We set ρ = 1, and terminate ADAL after the
maximum residual maxj ‖rj(xk)‖, i.e., the maximum con-
straint violation among all constraints j = 1, . . . ,m, reached
a value of 1e-4. We note that this termination criterion was
satisfied at around 100 iterations for practically all instances.
Also note that for this case m = 1 and q = 6, hence, the
stepsize is simply a scalar that is set to τ = 1/6. For this
problem, we observe an interesting behavior: ADAL converges
to the “best” local minimum of the problem in almost all
cases, which is not always true for the centralized solver. Both
schemes are initialized at the same point at each instance.

Next, we consider a problem with multiple constraints m =
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Fig. 3. Simulation results of ADAL applied to problem (43) for different
values of the penalty parameter ρ = 1, 3, 10, 20: a) Objective function
convergence, and b) Constraint violation convergence.

5, more agents N = 8, and larger box constraint sets

min
x

cos(x1) + sin(x2) + ex3 + 0.1x34

+ 0.1
/

(1 + e−x5) + 0.01(x56 − x6 − x46 + x36)

+
√
x7 + 15 sin(x7/10) + ex8

/
(x28 + ex8)

s.t. Ax = b, (43)
− 10 ≤ xi ≤ 10, ∀ i = 1, . . . , 8,

where the constraint parameters A ∈ R5×8 and b ∈ R5 are
randomly generated with entries sampled from the standard
normal distribution (such that the problem is feasible). When
generating A, we always ensure that it has full row rank (to
prevent trivial constraint sets), and that at least two decision
variables are coupled in each constraint.

Fig. 3 depicts the convergence results of ADAL applied to
problem (43), where the generated matrix A is( 0 0 1.2634 0.9864 0 0.4970 −0.2259 −0.2783

0 1.6995 0 0 0 1.9616 0 0
−1.8780 0 0 0 0 −2.5970 −0.8325 0

0 0 0 −0.3894 0 0 0 0.8270
−0.8666 0 0 0 0.2461 −0.1226 0 0

)
,

and b = [−0.0579,−1.6883, 0.8465, 0.1843, 0.6025]>. In this
case the stepsizes are set to T = diag(1/5, 1/2, 1/3, 1/2, 1/3).
To examine how sensitive ADAL is to the choice of the user-
defined penalty coefficient ρ, we present convergence results
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Fig. 4. The structure of the ADAL communication network that needs to
be established between the agents of problem (43). The red circles indicate
agents, while the blue lines depict two-way message exchanges between the
corresponding agents.

for four different choices ρ = 1, 3, 10, 20. We terminate ADAL
after reaching a maximum constraint violation of 3e-4. Two
significant observations can be made based on these results.
On one hand, choosing larger values of ρ, e.g. 10 or 20, leads
to faster convergence, albeit at the cost of converging to a
worse local minimum in terms of objective function value.
On the other hand, choosing small ρ, e.g. 1 or 3, allows
ADAL to find a better solution, however, convergence of the
constraint violation slows down significantly after reaching
accuracy levels of about 1e-3. Furthermore, to clarify the
necessary communication pattern between agents during the
execution of ADAL, cf. the pertinent discussion in section II,
Fig. 4 illustrates the communication network that needs to be
established for this particular problem. For example, agent 2
is coupled only in the 2nd constraint with agent 6, hence, it
only needs to communicate with 6.

In order to test the sensitivity of ADAL to initialization
for problem (43), we test it for 50 different initialization
instances. The results are depicted in Fig. 5(a), where we also
include the solutions obtained from the centralized scheme
for the same initializations as ADAL. We observe that, for
this problem, the choice of initialization point plays a more
significant role in determining which local minimum ADAL
will converge to, as compared to the corresponding results
for the previous problem (42) where ADAL converged to the
same local minimum for the vast majority of initializations.
Moreover, in Fig. 5(b) we plot the evolution of the Lyapunov
function φ(xk,λk), cf. (14), for an instance of problem
(43) where ADAL is initialized (randomly) at x0 =
[4.993,−5.904,−4.087, 2.292,−1.648,−2.883, 6.388, 7.331]
and λ = 0 with ρ = 1. We observe that φ is strictly
decreasing at each iteration, as expected.

Next, we test ADAL on problems of the form (43) for
50 different instances of the problem parameters A and b.
The objective of this experiment is to examine the behavior
of ADAL with a predefined value of ρ for a wide range of
problems, instead of finding the best ρ for a given problem as
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Fig. 5. a) Simulation results for ADAL and the centralized solver applied to
problem (43). The results correspond to 50 different initialization instances.
At each instance, the initialization point is the same for both ADAL and the
centralized solver. The red and blue squares indicate the objective function
value at the point of convergence for the centralized method and ADAL,
respectively. A blue dashed line indicates that ADAL converged to a better
(or the same) local minimum, while a red dashed line indicates the opposite.
b) Evolution of the Lyapunov function φ(xk,λk).

in Fig. 3. This is important for practical applications, where
we need to choose a value for ρ without knowing the exact
problem parameters. In order to ensure that ρ is sufficiently
large for all problem realizations, in this experiment we set
ρ = 5. We terminate ADAL after reaching a maximum
constraint violation of 3e-4. The results are shown in Fig.
6. We observe that overall the performance of ADAL is
satisfactory, judging by the fact that it converges to the same
local minimum as the centralized solver for most of the cases.

In the theoretical analysis of section III, we used the
assumptions that the initialization point is sufficiently close
to a locally optimal solution and that ρ is large enough. Here,
we perform numerical experiments to explore more thoroughly
how these conditions affect the convergence of the proposed
method. Towards this goal, we consider the following optimal
consensus problem, where 25 agents have different versions of
the Rosenbrock function and all need to agree on a common
optimal decision that minimizes the sum of the individual
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Fig. 6. Simulation results for ADAL and the centralized solver applied to
problem (43). The results correspond to 50 different choices of the problem
parameters A and b. At each instance, the initialization point is the same
for both ADAL and the centralized solver. The red and blue squares indicate
the objective function value at the point of convergence for the centralized
method and ADAL, respectively. A blue dashed line indicates that ADAL
converged to a better (or the same) local minimum, while a red dashed line
indicates the opposite.

objectives:

min

25∑
i=1

(ai − xi)2 + bi(yi − x2i )2

subject to xi = xi+1, ∀i = 1, . . . , 24,

yi = yi+1, ∀i = 1, . . . , 24,

xi, yi ∈ [−4, 4], ∀i = 1, . . . , 25,

(44)

We generate 2000 instances of the problem; for each in-
stance the parameters ai ∈ [1, 6], bi ∈ [40, 120], and the
primal variables xi, yi are randomly sampled from a uniform
distribution for each agent i, while the dual variables are
initialized uniformly randomly within the [-10,10] interval.
We consider values of ρ ∈ {50, 100, 250, 500}. For each
instance, we start with ρ = 50 and if the algorithm does
not converge (maximum absolute constraint violation of 10−3)
within 1000 iterations, we increase ρ to the next value and
restart the algorithm from the same initialization point. The
convergence results are summarized in Table I, where we
include the percentage of converged cases for each value of ρ
(note that they sum to 100%), and the average, minimum, and,
maximum objective function values at convergence for each
value of ρ over the 2000 instances. We observe that, for large
enough ρ, the proposed method always converges, regardless
of the initialization. Nevertheless, it appears that for larger
values of ρ the algorithm consistently converges to points with
relatively larger objective function value; an interesting result
that warrants further investigation on how the value of ρ affects
the convergence properties of the proposed method.

The aforementioned results suggest that certain heuristics
can be used to appropriately tune ADAL. For example, we
can perform an online hyper-parameter search by running in
parallel multiple instances of ADAL, each one for a different
value of ρ and a different initialization, and then selecting the
best solution. If running multiple problem instances in parallel
is not possible due to limited resources, we can alternatively

TABLE I
CONVERGENCE RESULTS FOR PROBLEM (44).

Value of ρ 50 100 250 500
Converged cases 820 (41%) 960 (48%) 220 (11%) N/A
Mean obj. value 346.83 817.04 2003.9 N/A
Min obj. value 257.78 505.02 1483.8 N/A
Max obj. value 479.66 1319.4 2250 N/A

perform a dynamic-update search where we run one instance
of ADAL each time, starting with small values of ρ, and in-
creasing ρ if the solution does not yield a reasonable reduction
in the constraint violations within a pre-specified number of
iterations. Note that the theoretical analysis does not allow for
varying ρ during the execution of a single ADAL instance,
i.e., if we change ρ between iterations there is no guarantee
that ADAL will converge. This is a typical characteristic of
all augmented Lagrangian methods, distributed or not.

V. CONCLUSIONS

In this paper we have investigated a distributed solution
technique for a certain class of non-convex constrained op-
timization problems. In particular, we have considered the
problem of minimizing the sum of, possibly non-convex, local
objective functions whose arguments are local variables that
are constrained to lie in closed, convex sets. The local variables
are also globally coupled via a set of affine constraints. We
have proposed an iterative distributed algorithm and estab-
lished its convergence to a local minimum of the problem
under assumptions that are commonly used for the conver-
gence of non-convex optimization methods. The proposed
method is based on the augmented Lagrangian framework and
is an extension of previous work that considered only convex
problems. To the best of our knowledge this is the first paper
that formally establishes the convergence to local minima for
a distributed augmented Lagrangian method in non-convex
settings. Moreover, compared to our previous work, in this
paper we have proposed a more general and fully decentralized
rule to select the stepsizes involved in the method. We have
verified the theoretical convergence analysis via numerical
simulations.

VI. APPENDIX

Proof of Lemma 2: Consider the result of Lemma 1 and

add the term ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
to both

sides of inequality (15), which gives us∑
i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aix̂

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̂
k
− λ∗

)>(
λk − λ̂

k
)

≥ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(∑
j 6=i

(Ajx
k
j −Ajx̂

k
j )
)

+ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
,
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Grouping the terms at the right-hand side of the inequality by
their common factor, we transform the estimate as follows:∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aix̂

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̂
k
− λ∗

)>(
λk − λ̂

k
)

≥ ρ
∑
i

(
Aix̂

k
i −Aix

∗
i

)>∑
j

(
Ajx

k
j −Ajx̂

k
j

)
,

Recall that
∑
jAj(x

k
j − x̂kj ) = r(xk)− r(x̂k), which means

that this term is a constant factor with respect to the summation
over i in the right hand side of the previous relation. Moreover,∑
iAix̂

k
i −

∑
iAix

∗
i =

∑
iAix̂

k
i − b = r(x̂k). Substituting

these terms at the right-hand side of the previous relation,
gives us∑

i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aix̂

k
i −Aix

∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λ̂
k
− λ∗

)>(
λk − λ̂

k
)

≥ ρr(x̂k)>
(
r(xk)− r(x̂k)

)
=
(
λ̂
k
− λk

)>(
r(xk)− r(x̂k)

)
. (45)

Next, we substitute the expressions

(Aix̂
k
i −Aix

∗
i ) = (Aix

k
i −Aix

∗
i ) + (Aix̂

k
i −Aix

k
i )

and λ̂
k
− λ∗ = (λk − λ∗) + (λ̂

k
− λk),

in the left-hand side of (45). We obtain∑
i

(
∇fi(x∗i )−∇fi(x̂ki )

)>(
x̂ki − x∗i

)
+ ρ

∑
i

(
Aixi

k −Aix
∗
i

)>(
Aix

k
i −Aix̂

k
i

)
+

1

ρ

(
λk − λ∗

)>(
λk − λ̂

k
)

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

ρ
‖λ̂

k
− λk‖2

+
(
λ̂
k
− λk

)>(
r(xk)− r(x̂k)

)
.

which completes the proof.
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