
Distributed Optimal Control Synthesis for Multi-Robot Systems under
Global Temporal Tasks

Yiannis Kantaros, and Michael M. Zavlanos,

Abstract— This paper proposes a distributed sampling-based
algorithm for optimal multi-robot control synthesis under
global Linear Temporal Logic (LTL) formulas. Existing plan-
ning approaches under global temporal goals rely on graph
search techniques applied to a synchronous product automaton
constructed among the robots. In our previous work, we
have proposed a more tractable centralized sampling-based
algorithm that builds incrementally trees that approximate
the state-space and transitions of the synchronous product
automaton and does not require sophisticated graph search
techniques. In this work, we provide a distributed implemen-
tation of this sampling-based algorithm, whereby the robots
collaborate to build subtrees that can be stored and manipulated
locally decreasing the computational time significantly. We
provide theoretical guarantees showing that the distributed
algorithm preserves the probabilistic completeness and asymp-
totic optimality of its centralized counterpart. Finally, we show
through numerical experiments that the proposed algorithm
can synthesize optimal plans from product automata with
billions of states, which is not possible using standard optimal
control synthesis algorithms or off-the-shelf model checkers.
To the best of our knowledge, this is the first distributed,
probabilistically complete, and asymptotically optimal control
synthesis for multi-robot systems under global temporal tasks.

I. INTRODUCTION

Control synthesis for mobile robots under complex tasks,
captured by Linear Temporal Logic (LTL) formulas, build
upon either bottom-up approaches when independent LTL
tasks are assigned to robots [1], [2] or top-down approaches
when a global LTL formula describing a collaborative task
is assigned to a team of robots [3], [4], as in this work.
Common in the above works is that they rely on model
checking theory [5] to find paths that satisfy LTL-specified
tasks, without optimizing task performance. Optimal con-
trol synthesis under local and global LTL specifications
has been addressed in [6]–[8] and [9], [10], respectively.
In top-down approaches [9], [10], optimal discrete plans
are derived for every robot using the individual transition
systems that capture robot mobility and a Non-deterministic
Büchi Automaton (NBA) that represents the global LTL
specification. Specifically, by taking the synchronous product
among the transition systems and the NBA, a synchronous
product automaton can be constructed. Then, representing
the latter automaton as a graph and using graph-search
techniques, optimal motion plans can be derived that satisfy
the global LTL specification and optimize a cost function.

Yiannis Kantaros and Michael M. Zavlanos are with the Depart-
ment of Mechanical Engineering and Materials Science, Duke University,
Durham, NC 27708, USA. {yiannis.kantaros,michael.zavlanos}@duke.edu.
This work is supported in part by NSF under grant IIS #1302283.

As the number of robots or the size of the NBA increases,
the state-space of the product automaton grows exponentially
and, as a result, graph-search techniques become intractable.
Consequently, these motion planning algorithms scale poorly
with the number of robots and the complexity of the assigned
task. A more tractable approach is presented in [11] that
identifies independent parts of the LTL formula and builds
a local product automaton for each agent. Nevertheless, this
approach can be applied only to finite LTL missions and does
not have optimality guarantees.

To mitigate these issues, in our previous work we have
proposed a centralized optimal control synthesis algorithm
that avoids the explicit construction of the product among
the transition systems and the NBA. Specifically, [12] builds
incrementally directed trees that approximately represent the
state-space and transitions among states of the synchronous
product automaton. The advantage is that approximating
the product automaton by a tree rather than representing
it explicitly by an arbitrary graph, as existing works do,
results in significant savings in resources both in terms of
memory to save the associated data structures and in terms
of computational cost in applying graph search techniques.
In this way, [12] scales much better compared to existing
top-down approaches. Nevertheless, this approach requires a
central unit to store the tree structures.

In this work, we provide a distributed implementation of
[12]. In particular, the robots collaborate to build subtrees
that can be stored and manipulated locally decreasing the
computational time significantly while the composition of
these subtrees simulates the global tree build by [12]. We
also provide theoretical guarantees showing that the dis-
tributed algorithm preserves the probabilistic completeness
and asymptotic optimality of its centralized counterpart [12].
We present numerical simulations that show that the pro-
posed approach can build trees faster than [12] and can
synthesize optimal motion plans from product automata with
billions of states, which is impossible using existing optimal
control synthesis algorithms or the off-the-shelf symbolic
model checkers PRISM [13] and NuSMV [14]. Finally, in
Appendix II, we discuss how the proposed algorithm can be
transformed into an anytime sampling based algorithm [15].
This way, we can assign feasible paths to the robots which
are generated offline and are optimized online, as the robots
execute them.

To the best of our knowledge, the most relevant works are
presented in [16]–[19]. Common in the works [16], [17] is
that a discrete abstraction of the environment is built until
it becomes expressive enough to generate a motion plan

that satisfies the LTL specification. Both algorithms build
upon the RRG algorithm to construct transition systems that
capture robot mobility in the workspace. However, building
arbitrary graph structures to represent transition systems
compromises scalability of temporal planning methods since,
as the number of samples increases, so does the density of
the constructed graph increasing in this way the required
resources to save the associated structure and search for
optimal plans using graph search methods. More details
about comparison with these works can be found in [12].
On the other hand, our proposed sampling-based approach,
given a discrete abstraction of the environment [20], builds
trees, instead of arbitrary graphs, to approximate the product
automaton. Therefore, it is more economical in terms of
memory requirements and does not require the application of
expensive graph search techniques to find the optimal motion
plan, but instead it tracks sequences of parent nodes starting
from desired accepting states. In this way, we can handle
more complex planning problems with more robots and LTL
tasks that correspond to larger NBA, compared to the ones
that can be solved using the approach in [17]. Moreover, we
show that our proposed planning algorithm is asymptotically
optimal which is not the case in [17]. Centralized sampling-
based planning algorithms for multi-robot systems under
global temporal goals were also proposed in our previous
works [18], [19] and further extended in [12]. To the best
of our knowledge, this work presents the first distributed
and computationally efficient control synthesis algorithm
under global temporal specifications that is probabilistically
complete and asymptotically optimal.

II. PROBLEM FORMULATION

Consider N mobile robots that evolve in a complex
workspace W ⊂ Rd according to the following dynamics:
ẋi(t) = fi(xi(t),ui(t)), where xi(t) and ui(t) are the
position and the control input associated with robot i ∈
{1, . . . , N}. We assume that there are W disjoint regions
of interest in W . The j-th region is denoted by `j and it
can be of any arbitrary shape. Given the robot dynamics,
robot mobility in the workspace W can be represented by
a weighted Transition System (wTS) obtained through an
abstraction process; see e.g., [20] and the references therein.
The definition of the wTS for robot i follows which is also
illustrated in Figure 1.

Definition 2.1 (wTS): A weighted Transition System
(wTS) for robot i, denoted by wTSi is a tuple
wTSi =

(
Qi, q0i ,→i, wi,APi, Li

)
where: (a)

Qi = {q`ji }Wj=1 is the set of states, where a state q
`j
i

indicates that robot i is at location `j ; (b) q0i ∈ Qi is the
initial state of robot i; →i⊆ Qi × Qi is the transition
relation for robot i. Given the robot dynamics, if there is a
control input ui that can drive robot i from location `j to
`e, then there is a transition from state q`ji to q`ei denoted by
(q
`j
i , q

`e
i) ∈→i; (c) wi : Qi × Qi → R+ is a cost function

that assigns weights/cost to each possible transition in wTS.
For example, such costs can be associated with the distance
that needs to be traveled by robot i in order to move from

Room 1

Room 2

Room 3 Room 4 Room 5

Corridor

Room 6

6 6

12
6

84
7

w
ei

gh
te

d
Tr

an
si

tio
n

S
ys

te
m

In
do

or
 E

nv
iro

nm
en

t

Fig. 1. Graphical depiction of a wTS that abstracts robot mobility in an
indoor environment. Black disks stand for the states of wTS, red edges
capture transitions among states and numbers on these edges represent the
cost wi for traveling from one state to another one.

state q`ji to state q`ki ; (d) APi =
⋃W
j=1{π

`j
i } is the set of

atomic propositions, where π
`j
i is true if robot i is inside

region `j and false otherwise; and (e) Li : Qi → APi is an
observation/output function defined as Li(q

`j
i) = π

`j
i , for

all q`ji ∈ Qi.
Given the definition of the wTS, we can define the

synchronous Product Transition System (PTS), which cap-
tures all the possible combinations of robots’ states in their
respective wTSi, as follows [9]:

Definition 2.2 (PTS): Given N transition systems
wTSi = (Qi, q0i ,→i, wi,AP, Li), the product transition
system PTS = wTS1 ⊗ wTS2 ⊗ · · · ⊗ wTSN is a tuple
PTS = (QPTS, q

0
PTS,−→PTS, wPTS,AP, LPTS) where (a)

QPTS = Q1 × Q2 × · · · × QN is the set of states; (b)
q0PTS = (q01 , q

0
2 , . . . , q

0
N) ∈ QPTS is the initial state, (c)

−→PTS⊆ QPTS × QPTS is the transition relation defined by

the rule
∧
∀i(qi→iq

′
i)

qPTS→PTSq′PTS
, where with slight abuse of notation

qPTS = (q1, . . . , qN) ∈ QPTS, qi ∈ Qi. The state q′PTS
is defined accordingly. In words, this transition rule says
that there exists a transition from qPTS to q′PTS if there
exists a transition from qi to q′i for all i ∈ {1, . . . , N}; (d)
wPTS : QPTS × QPTS → R+ is a cost function that assigns
weights/cost to each possible transition in PTS, defined as
wPTS(qPTS, q

′
PTS) =

∑N
i=1 wi(Π|wTSi

qPTS,Π|wTSi
q
′

PTS), where
q′PTS, qPTS ∈ QPTS, and ΠwTSi

qPTS stands for the projection
of state qPTS onto the state space of wTSi. The state
ΠwTSiqPTS ∈ Qi is obtained by removing all states in qPTS

that do not belong to Qi; (e) AP =
⋃N
i=1APi is the set of

atomic propositions; and, (f) LPTS =
⋃
∀i Li : QPTS → AP

is an observation/output function giving the set of atomic
propositions that are satisfied at a state qPTS ∈ QPTS.

In what follows, we give definitions related to the PTS,
that we will use throughout the rest of the paper. An infinite
path τ of a PTS is an infinite sequence of states, τ =
τ(1)τ(2)τ(3) . . . such that τ(1) = q0PTS, τ(k) ∈ QPTS, and
(τ(k), τi(k+1)) ∈→PTS, ∀k ∈ N+, where k is an index that
points to the k-th entry of τ denoted by τ(k). The trace of
an infinite path τ = τ(1)τ(2)τ(3) . . . of a PTS, denoted by

trace(τ) ∈
(
2AP

)ω
, where ω denotes infinite repetition,

is an infinite word that is determined by the sequence of
atomic propositions that are true in the states along τ , i.e.,
trace(τ) = L(τ(1))L(τ(2)) A finite path of a PTS can
be defined accordingly. The only difference with the infinite
path is that a finite path is defined as a finite sequence of
states of a PTS. Given the definition of the weights wPTS
in Definition 2.2, the cost of a finite path τ , denoted by
Ĵ(τ) ≥ 0, can be defined as

Ĵ(τ) =

|τ |−1∑
k=1

wPTS(τ(k), τ(k + 1)), (1)

where, |τ | stands for the number of states in τ . In words, the
cost (1) captures the total cost incurred by all robots during
the execution of the finite path τ .

We assume that the robots have to accomplish a complex
collaborative task encapsulated by a global LTL statement φ
defined over the set of atomic propositionsAP =

⋃N
i=1APi.

Due to space limitations, we abstain from formally defining
the semantics and syntax of LTL. A detailed overview can
be found in [5]. Given an LTL formula φ, we define the
language Words(φ) =

{
σ ∈ (2AP)ω|σ |= φ

}
, where |=⊆

(2AP) × φ is the satisfaction relation, as the set of infinite
words σ ∈ (2AP)ω that satisfy the LTL formula φ. Any LTL
formula φ can be translated into a Nondeterministic Büchi
Automaton (NBA) over (2AP)ω denoted by B [21] defined
as follows:

Definition 2.3 (NBA): A Nondeterministic Büchi Automa-
ton (NBA) B over 2AP is defined as a tuple B =(
QB ,Q0

B ,Σ,→B ,QFB
)
, whereQB is the set of states,Q0

B ⊆
QB is a set of initial states, Σ = 2AP is an alphabet,
→B⊆ QB×Σ×QB is the transition relation, and QFB ⊆ QB
is a set of accepting/final states.

Given the PTS and the NBA B that corresponds to the
LTL φ, we can now define the Product Büchi Automaton
(PBA) P = PTS⊗B [5], as follows:

Definition 2.4 (PBA): Given the product transition system
PTS = (QPTS, q

0
PTS,−→PTS, wPTS,AP, LPTS) and the NBA

B = (QB ,Q0
B ,Σ,→B ,QFB), we can define the Prod-

uct Büchi Automaton P = PTS ⊗ B as a tuple P =
(QP ,Q0

P ,−→P , wP ,QFP) where (a) QP = QPTS × QB is
the set of states; (b) Q0

P = q0PTS×Q0
B is a set of initial states;

(c) −→P⊆ QP ×2AP×QP is the transition relation defined

by the rule:
(qPTS→PTSq

′
PTS)∧

(
qB

LPTS(qPTS)−−−−−−→q′B

)
qP=(qPTS,qB)−→P q′P=(q′PTS,q

′
B)

. Transition from

state qP ∈ QP to q′P ∈ QP , is denoted by (qP , q
′
P) ∈−→P ,

or qP −→P q′P ; (d) wP (qP, q
′
P) = wPTS(qPTS, q

′
PTS), where

qP = (qPTS, qB) and q′P = (q′PTS, q
′
B); and (e) QFP =

QPTS ×QFB is a set of accepting/final states.
Given φ and the PBA an infinite path τ of a PTS

satisfies φ if and only if trace(τ) ∈ Words(φ), which
is equivalently denoted by τ |= φ. Specifically, if there
is a path satisfying φ, then there exists a path τ |= φ
that can be written in a finite representation, called
prefix-suffix structure, i.e., τ = τ pre[τ suf]ω , where the
prefix part τ pre is executed only once followed by the

indefinite execution of the suffix part τ suf. The prefix part
τ pre is the projection of a finite path ppre that lives in
QP onto QPTS. The path ppre starts from an initial state
q0P ∈ Q0

P and ends at a final state qFP ∈ QFP , i.e., it has the
following structure ppre = (q0PTS, q

0
B)(q1PTS, q

1
B) . . . (qKPTS, q

K
B)

with (qKPTS, q
K
B) ∈ QFP . The suffix part τ suf is the

projection of a finite path psuf that lives in QP onto
QPTS. The path psuf is a cycle around the final state
(qKPTS, q

K
B), i.e., it has the following structure psuf =

(qKPTS, q
K
B)(qK+1

PTS , qK+1
B) . . . (qK+S

PTS , qK+S
B)(qK+S+1

PTS , qK+S+1
B),

where (qK+S+1
PTS , qK+S+1

B) = (qKPTS, q
K
B). Then our goal is

to compute a plan τ = τ pre[τ suf]ω = Π|PTSp
pre[Π|PTSp

pre]ω ,
where Π|PTS stands for the projection on the state-space
QPTS, so that the following objective function is minimized

J(τ) = Ĵ(τ pre) + Ĵ(τ suf), (2)

which captures the total cost incurred by all robots during
the execution of the prefix and a single execution of the
suffix part. In (2), Ĵ(τ pre) and Ĵ(τ suf) stands for the cost
of the prefix and suffix part, where Ĵ(·) is defined in (1).
Specifically, in this paper we address the following problem.

Problem 1: Given a global LTL specification φ, and tran-
sition systems wTSi, for all robots i, determine a discrete
team plan τ that satisfies φ, i.e., τ |= φ, and minimizes the
cost function (2).

A. A Solution to Problem 1

Problem 1 is typically solved by applying graph-search
methods to the PBA. Specifically, to generate a motion plan
τ that satisfies φ, the PBA is viewed as a weighted directed
graph GP = {VP , EP , wP }, where the set of nodes VP is
indexed by the set of states QP , the set of edges EP is
determined by the transition relation −→P , and the weights
assigned to each edge are determined by the function wP .
Then, to find the optimal plan τ |= φ, shortest paths towards
final states and shortest cycles around them are computed.
More details about this approach can be found in [7]–[10]
and the references therein.

III. DISTRIBUTED SAMPLING-BASED OPTIMAL
CONTROL SYNTHESIS

Since the size of the PBA can grow arbitrarily large
with the number of robots and complexity of the task,
constructing the PBA and applying graph-search techniques
to find optimal plans, as discussed in Section II-A, is resource
demanding and computationally expensive. A more tractable
algorithm is presented in [12] that constructs incrementally
directed trees GT = {VT , ET ,Cost} that approximately
represent the state-space QP and the transition relation →P

of the PBA defined in Definition 2.4. The root of GT is
denoted by qrP . Also, the set of nodes VT contains the
states of QP that have already been sampled and added to
the tree structure. The set of edges ET captures transitions
between nodes in VT that satisfy the rule →P . The function
Cost : VT :→ R+ assigns the cost of reaching node
qP ∈ VT from the root qrP of the tree. In other words,

Fig. 2. Graphical depiction of the distributed construction of the global tree
GT = {VT , ET ,Cost} by two robots i, j. Robots i and j build subtrees
GiT and GjT to explore the state-space QP such that (i) GiT ∩G

j
T = ∅, (ii)

GiT ∪G
j
T = GT , and (iii) for all qP ∈ ViT [VjT], except for the root qrP , it

holds that all nodes q′P ∈ S(qP) belong to ViT [VjT].

Cost(qP) = Ĵ(τT), where qP ∈ VT and τT is the path
in the tree GT that connects the root to qP .

In this section we present a distributed implementa-
tion of the optimal control synthesis method presented in
[12]. Specifically, each robot i builds a subtree GiT =
{ViT , E iT ,Cost} ⊆ GT , so that the subtrees are (i) disjoint,
i.e.,

⋂
i ViT = ∅ and

⋂
i E iT = ∅, (ii) the union of the

subtrees comprises the global connected tree built by [12],
i.e.,

⋃
∀i ViT = VT ,

⋃
∀i E iT = ET , and (iii) for each qP ∈ ViT ,

except for the root qrP of GT , it holds that all successor
nodes of qP in VT , collected in the set S(qP), belong to
ViT , as well, for all robots i; see Figure 2. Conditions (i)-(iii)
allow for distributing the computational burden of extending,
rewiring, and storing the constructed tree across the robots.
The distributed construction of optimal plans is described
in Algorithm 1. Specifically, the prefix parts synthesized by
robot i are constructed in lines 2-8, the respective suffix parts
are constructed in lines 9-22, and the optimal discrete plan
is synthesized in lines 23-25.

A. Distributed Construction of Prefix Parts

Since the prefix part connects an initial state q0P =
(q0PTS, q

0
B) ∈ Q0

P to an accepting state qP = (qPTS, qB) ∈
QFP , with qB ∈ QFB , we can define the goal region for all
trees GiT , as [line 2, Alg. 1]

X pre
goal = {qP = (qPTS, qB) ∈ QP | qB ∈ QFB}. (3)

The root qrP of the global tree ∪∀iGiT = GT is an initial
state q0P = (q0PTS, q

0
B) of the PBA and the following process

is repeated for each initial state q0B ∈ Q0
B [lines 3-4, Alg.

1]. In line 4 of Algorithm 1, Q0
B(b0) stands for the b0-th

Algorithm 1: Distributed Construction of Optimal plans
τ |= φ

Input: Logic formula φ, Transition systems
wTS1, . . . ,wTSN , Initial location q0PTS ∈ QPTS ,
maximum numbers of iterations npre

max, nsuf
max

Output: Optimal plans τ |= φ
1 Convert φ to a NBA B =

(
QB ,Q0

B ,→B ,QFB
)
;

2 Define goal set: X pre
goal;

3 for b0 = 1 : |Q0
B | do

4 Initial NBA state q0B = Q0
B(b0);

5 Root of the tree: qrP = (q0PTS, q
0
B);

6
[
∪∀iGiT ,∪∀iP

i
]

=
DTree(X pre

goal,wTS1, . . . ,wTSN , B, qrP , n
pre
max);

7 for α = 1 : |Pi| do
8 τ

pre,Pi(α)
i = FindPath(GiT , qrP ,Pi(α)), in
parallel across the robots;

9 for i = 1 : N do
10 for α = 1 : |Pi| do
11 Root of the tree: qrP = Pi(α);
12 Define goal set: X suf

goal(q
r
P);

13 Select robot i∗;
14 if (qrP ∈ X

suf
goal) ∧ (wP (qrP , q

r
P) = 0) then

15 Gi∗T = ({qrP }, {qrP , qrP }, 0);
16 Si∗α = {qrP };
17 else
18

[
∪∀jGjT ,∪∀jS

j
α

]
=

DTree(X suf
goal,wTS1, . . . ,wTSN , B, qrP , n

suf
max);

19 for ej = 1 : |Sjα| do
20 τ

suf,Pi(α),ej
j =

FindPath(GjT , qrP ,Sjα(e)), in parallel
∀j;

21 Send τ suf,Pi(α),ej
j to robot i, if i 6= j ;

22 Robot i has collected all suffix parts for the
final Pi(α) and picks the one with the
minimum cost, denoted by τ suf,Pi(α)

i ;

23 [j∗, α∗] = argmin[j,f](Ĵ(τ
pre,Pj(α)
j)+Ĵ(τ

suf,Pj(α)
j));

24 τq0B = τ pre,α∗

j∗ [τ suf,α∗

j∗]ω;
25 Optimal Plan τ is selected among all plans τq0B to be

the one with the smallest cost;

state in the set Q0
B assuming an arbitrary enumeration of

the elements of the set Q0
B . Construction of the subtrees GiT

is described in Algorithm 2 which requires communication
between all robots.

1) Initialization: At the beginning the robots coordinate
to elect a robot i∗ that will store the root qrP . The election
criteria of robot i∗ can be arbitrary. In this work, the robot
i∗ is selected probabilistically, i.e., it is sampled from the
probability density function fi∗ : N+ → [0, 1], which we
assume that is non-zero on [1, 2, . . . , N] meaning that every
robot has a non-zero probability of being i∗ at every iteration
n of Algorithm 2. Also, we assume that the probability
density function fi∗ remains the same for all iterations n,

Algorithm 2: Function [GT , Z] =

DTree(Xgoal, wTS1, . . . ,wTSN , B, qrP , nmax)

1 Robot 1 samples robot i∗ from fi∗ and propagates the
result across the network;

2 Vi∗T = {qrP }, E i
∗

T = ∅, Cost(qrP) = 0;
3 ViT = E iT = ∅,∀i 6= i∗;
4 for n = 1 : nmax do
5 qnew

PTS = Sample(Vi∗T);
6 for b = 1 : |QB | do
7 Robot i∗ creates qnew

B = QB(b);
8 Robot i∗ constructs qnew

P = (qnew
PTS, q

new
B);

9 State qnew
P is transmitted to all other robots i;

10 if qnew
P /∈

⋃
∀i ViT then

11 [qprev,i
P , Ciqnew

P
] =

CandidateParent(qnew
P ,→P ,GiT), ∀i;

12 if {qprev,1
P , qprev,2

P , . . . , qprev,N
P } 6= ∅ then

13 j = argmini{Ciqnew
P
};

14 if qprev,j
P 6= qrP then

15 s = j;
16 else
17 s = argmaxi{Mn

i };
18 VsT = VsT ∪ {qnew

P };
19 EsT = EsT ∪ {q

prev,j
P , qnew

P };
20 Cost(qnew

P) = Cjqnew
P

;
21 if qnew

P ∈ Vinew

T , for some inew then
22 Robot inew transmits to all other robots

Cost(qnew
P);

23 [E iT ,Cost,Di] =
Rewire(qnew

P ,Cost(qnew
P),GiT), ∀i;

24 Vinew

T = Vinew

T ∪ (
⋃
∀i 6=inew S(Di));

25 E inew

T = E inew

T ∪ (
⋃
∀i 6=inew EDi

T);
26 Robot i∗ samples a new robot i∗ from fi∗ ;
27 Zi = ViT ∩ Xgoal, ∀i;

although other sampling methods for i∗ can be employed;
see Remark 1.1 in Appendix I. Initially, without loss of
generality, we assume that robot 1 will sample from fi∗ the
robot i∗ and, then notifies the sampled robot i∗ about the
result [line 1, Alg. 2]. Then, the set of nodes and edges of
the subgraph Gi∗T are initialized as Vi∗T = {qrP }, E i

∗

T = ∅
while the cost of the root is zero [line 2, Alg. 2]. The set
of nodes and edges for all other subgraphs GiT , i 6= i∗, are
initially empty [line 3, Alg. 2].

2) Constructing state qnew
P : After each iteration n of

Algorithm 2, the current robot i∗ takes a sample from fi∗

which is the new robot i∗ [line 26, Alg. 2]. Then iteration
n+1 of Algorithm 2 follows. First, robot i∗ is responsible for
sampling a new state qnew

P = (qnew
PTS, q

new
B). This is achieved

by the sampling function Sample [lines 5-8, Alg. 2]; see
Algorithm 3. Specifically, robot i∗ first creates a state qrand

PTS =
Π|PTSq

rand
P , where qrand

P is sampled from a given discrete
distribution frand(qP |Vi

∗

T) : Vi∗T → [0, 1] [lines 1-2, Alg. 3].
The probability density function frand(qP |Vi

∗

T) defines the

Algorithm 3: Function Sample(Vi∗T ,wTS1, . . . ,wTSN)

1 Pick a state qrand
P ∈ Vi∗T from a given distribution

frand(qP |Vi
∗

T) : Vi∗T → [0, 1];
2 qrand

PTS = Π|PTSq
rand
P ;

3 Sample a state qnew
PTS from probability distribution

fnew : RPTS(qrand
PTS)→ [0, 1];

4 return qnewPTS ;

probability of selecting the state qP ∈ Vi
∗

T as the state qrand
P

at iteration n of Algorithm 2 given the set Vi∗T . We make the
following assumption for frand(qP |Vi

∗

T) that is also made in
[12].

Assumption 3.1 (Probability density function frand): (i)
The probability density function frand(qP |Vi

∗

T) : Vi∗T → [0, 1]
is non-zero on Vi∗T . (ii) The probability density function
frand(qP |Vi

∗

T) : Vi∗T → [0, 1] remains the same for all
iterations n and for a given state qP ∈ Vi

∗

T is monotonically
decreasing with respect to the size of |Vi∗T |. This also implies
that for a given qP ∈ Vi

∗

T , the probability frand(qP |Vi
∗

T)
remains the same for all iterations n if the set Vi∗T does not
change. (iii) Independent samples qrand

P can be drawn from
frand.

Given a state qrand
PTS , we define its reachable set in the PTS

RPTS(qrand
PTS) = {qPTS ∈ QPTS | qrand

PTS →PTS qPTS} (4)

i.e., RPTS(qrand
PTS) ⊆ QPTS collects all the states qPTS ∈ QPTS

that can be reached from qrand
PTS in one hop. Then, we sample

a state qnew
PTS from a discrete distribution fnew(qPTS|qrand

PTS) :
RPTS → [0, 1] [line 3, Alg. 3] that satisfies the following
assumption that is also made in [12].1

Assumption 3.2 (Probability density function fnew): (i)
The probability density function fnew(qPTS|qrand

PTS) : RPTS →
[0, 1] is non-zero on RPTS(qrand

PTS). (ii) For a given qrand
PTS ,

the distribution fnew(qPTS|qrand
PTS) remains the same for all

iterations n. (iii) Given a state qrand
PTS , independent samples

qnew
PTS can be drawn from fnew.

In order to build incrementally a graph whose set of nodes
approximates the state-space QP we need to append to qnew

PTS
a state from the state-space QB of the NBA B. Let qnew

B =
QB(b) [line 7, Alg. 2] be the candidate Büchi state that
will be attached to qnew

PTS, where QB(b) stands for the b-th
state in the set QB assuming an arbitrary enumeration of the
elements of the set QB . The following procedure is repeated
for all qnew

B = QB(b) with b ∈ {1, . . . , |QB |}. First, we
construct the state qnew

P = (qnew
PTS, q

new
B) ∈ QP [line 8, Alg.

2]. Then, once qnew
P is sampled, robot i∗ transmits it to all

other robots in the team that coordinate with each other and
with robot i∗ [line 9, Alg. 2] to check if there exists a robot

1Note that other sampling methods for qrand
P and qnew

P can be employed
that do not require the more strict conditions of Assumptions 3.2(ii) and
3.1(ii); see Remark A.1 and Remark A.2 in Appendix A, in [12]. Also,
note that in order to obtain the state qnew

PTS we do not need to construct
the reachable set RPTS(qrand

PTS). Instead, only reachable sets RTSi (qrand
i),

for all robots i, that collect all states that are reachable from the state
qrand
i = Π|TSiq

rand
PTS ∈ Qi in one hop need to be constructed. More details

can be found in [12].

Algorithm 4: Function CandidateParent(qnew
P ,→P

,GiT)

1 s Collect in set R→Vi
T

(qnew
P)i all states qP ∈ ViT that

abide by the following transition rule:
(qP , q

new
P) ∈→P ;

2 if R→Vi
T

(qnew
P)i 6= ∅ then

3 qprev,i
P = argminqP∈R→Vi

T

(qnew
P)i [Cost(qP) +

wPTS(Π|PTSqP ,Π|PTSq
new
P)];

4 Ciqnew
P

=

Cost(qprev,i
P) + wPTS(Π|PTSq

prev,i
P ,Π|PTSq

new
P);

5 return qprev,i
P ;

inew for which qnew
P ∈ Vinew

T .2 If qnew
P /∈ ViT for all robots

i, then the robots check if they can extend their respective
graphs GiT towards the new state qnew

P [lines 10-20, Alg. 2].
Otherwise, if there exists a robot inew such that qnew

P ∈ Vinew

T ,
then all robots i including inew check if they can rewire the
nodes in ViT to qnew

P [lines 21-23, Alg. 2].
3) Extending subgraph GiT to qnew

P : If qnew
P /∈ ViT for all

robots i [lines 10-20, Alg. 2], then every robot i finds the can-
didate parent qprev,i

P for qnew
P , selected from the set of nodes

ViT , that will result in the minimum cost Cost(qnew
P). This

is accomplished by Algorithm 4 [line 11, Alg. 2] which all
robots execute independently from each other. Specifically,
in Algorithm 4, robot i constructs the set R→Vi

T
(qnew
P) ⊆ ViT

defined as

R→Vi
T

(qnew
P) = {qP ∈ ViT |qP →P q

new
P }, (5)

that collects all states qP ∈ ViT that satisfy the
transition rule (qP , q

new
P) ∈→P [line 1, Alg. 4]. If

this set R→Vi
T

(qnew
P) is empty then robot i does not

propose any candidate parent for the sample qnew
P . In case

R→Vi
T

(qnew
P) 6= ∅, then robot i proposes the state qprev,i

P =

argminqP∈R→Vi
T

(qnew
P)i [Cost(qP) + wPTS(Π|PTSqP ,Π|PTSq

new
P)]

as the candidate parent of the sample qnew
P [line 3, Alg.

4]. In words qprev,i
P is selected among all states in

R→Vi
T

(qnew
P) so that the cost of qnew

P is minimized. Let

Ciqnew
P

= Cost(qprev,i
P) + wPTS(Π|PTSq

prev,i
P ,Π|PTSq

new
P), be

the cost of qnew
P if its parent is qprev,i

P [line 4, Alg. 4]. Once
Algorithm 4 has been executed by all robots, then they
check if {qprev,1

P , qprev,2
P , . . . , qprev,N

P } 6= ∅, i.e., if there is
at least one robot that has proposed a candidate parent
for the sample qnew

P [line 12, Alg. 2]. If this is the case,
then the parent of qnew

P is selected to be the node qprev,j
P ,

with j = argmini{Ciqnew
P
}, i.e., the node that results in the

minimum cost for qnew
P among all candidate parents [line

13, Alg. 2].
Finally, the robots coordinate to decide which robot will

include the new state qnew
P in its subtree. Hereafter, we denote

by s the robot that will store the sample qnew
P . If the parent

2Observe that robot inew is unique, since the subtrees GiT are disjoint.

Fig. 3. Graphical depiction of extending the subtrees. The blue square
stands for the root qrP . The subtree GiT consists of the green disks and
edges and GjT consists of the blue square, blue disks, and blue edges. The
blue diamond stands for the state qnew

P . The dashed black arrow represents
the new edge that will be added to the set EjT after extending the subtrees.

Algorithm 5: Function Rewire(qnew
P ,ViT , E iT ,Cost)

1 Collect in set R←Vi
T

(qnew
P) all states of qP ∈ ViT that

abide by the following transition rule:
(qnew
P , qP) ∈→P ;

2 Di = ∅;
3 for qP ∈ R←Vi

T
(qnew
P) do

4 if Cost(qP) >
Cost(qnew

P) + wPTS(Π|PTSq
new
P ,Π|PTSqP) then

5 E iT = E iT \ {(Parent(qP), qP)};
6 Cost(qP) =

Cost(qnew
P) + wPTS(Π|PTSq

new
P ,Π|PTSqP);

7 Update the cost of all successor nodes of
qP ∈ ViT ;

8 Update set of rewired nodes: Di = Di ∪ {qP };
9 return E iT , Cost, Di;

qprev,j
P of qnew

P is not the root qrP of the tree, then robot j
will store qnew

P , i.e., s = j [lines 14-15, Alg. 2]. On the
other hand, if qprev,j

P = qrP , then the robot with the largest
free memory at iteration n, denoted by Mn

i ≥ 0, will store
qnew
P , i.e., s = argmaxi{Mn

i }, accounting in this way for
an efficient use of the available resources [lines 16-17, Alg.
2]. This way we guarantee that the successor nodes of any
node qP ∈ ViT , except for the root qrP , belong to ViT , for all
robots i. As it will be discussed later, this enables the parallel
execution of the rewiring step across the subtrees GiT . Next,
the set of nodes and edges for the subgraph GsT are updated as
VsT = VsT ∪{qnew

P } and EsT = EsT ∪{q
j
prev, qnew

P } [lines 18-19,
Alg. 2], while the cost of qnew

P is Cost(qnew
P) = Cjqnew

P
[line

20, Alg. 2]. The above procedure is illustrated in Figure 3, as
well. Notice that due to the way that the robot s that stores
the sample qnew

P is selected, it holds that at every iteration
n the number of robots that have a non-empty subtree GiT
is equal to min(|C(qrP)|, N), where C(qrP) ⊆ S(qrP) is a set
that collects the children, i.e., the 1-hop successors, of the
root qrP in the global tree GT = ∪iGiT .

Fig. 4. Graphical depiction of Algorithm 5. The blue square stands for the
root qrP . Gray arrows stand for the edges that will be deleted from the set
EiT and EjT during the execution of Algorithm 5. Red arrows stand for the
new edges that are created after rewiring within each subtree. The rewired
node in GiT is represented by red color. The red node along with the red
dashed edge will be removed from GiT and will be added to GjT after the
end of the rewiring step since qnew

P (blue diamond) belongs to VjT . As a
result, all successor nodes of any node belong to the same subtree.

4) Rewiring GiT through qnew
P : The rewiring step occurs in

two cases. First, it happens if the sample qnew
P already belongs

to the set of nodes Vinew

T of robot inew. Second, it occurs if the
sample qnew

P does not already belong to ∪iViT , but there is a
robot s, determined as per lines 16-17 in Algorithm 2, that
extends its subtree towards qnew

P . Hereafter, with slight abuse
of notations, we denote by inew the robot that has stored
the sample qnew

P for both cases. In both cases, robot inew

transmits the cost Cost(qnew
P) to all other robots i [lines

21-22, Alg. 2]. Then, these robots i along with robot inew,
check simultaneously if they can rewire the nodes qP ∈ ViT
and qP ∈ Vi

new

T to the node qnew
P ∈ Vinew

T in order to decrease
the cost Cost(qP) [lines 23, Alg. 2]. The rewiring process
in GiT is described in Algorithm 5 and is illustrated in Figure
4. Note that the rewiring process occurs in parallel across all
subtrees GiT .

In Algorithm 5 we first construct the reachable set
R←Vi

T
(qnew
P) ⊆ ViT defined as

R←Vi
T

(qnew
P) = {qP ∈ ViT |qnew

P →P qP }, (6)

that collects all states of qP ∈ ViT that satisfy the transition
rule (qnew

P , qP) ∈→P , i.e., all states that can be directly
reached by qnew

P [line 1, Alg. 5]. Then, for all states qP ∈
R←Vi

T
(qnew
P) we check if their current cost Cost(qP) is

greater than their cost if they were connected to the root
through qnew

P [line 4, Alg. 5]. If this is the case for a node
qP ∈ R←Vi

T
(qnew
P), then the new parent of qP becomes qnew

P

and the edge that was connecting qP to its previous parent
is deleted [line 5, Alg. 5]. The cost of node qP is updated
as Cost(qP) = Cost(qnew

P) + wPTS(Π|PTSq
new
P ,Π|PTSqP)

to take into account the new path through which it gets
connected to the root [line 6, Alg. 5]. Once a state qP gets
rewired, the cost of all its successor nodes in GiT , collected

in the set

S(qP) ={q′P ∈ ViT |q′P is connected to qP through

a multi hop path in GiT }, (7)

is updated to account for the change in the cost of qP [line 7,
Alg. 5. Also, all robots i 6= inew store the rewired nodes in the
set Di [line 8, Alg. 5]. Then, after the rewiring step, robots
i 6= inew send to robot inew the set of nodes Di ∪ S(Di), the
set of edges among these nodes, denoted by EDi

T ⊆ E iT , and
their respective costs, i.e., Vinew

T = Vinew

T ∪ (
⋃
∀i6=inew S(Di))

and E inew

T = E inew

T ∪ (
⋃
∀i 6=inew EDi

T) [lines 24-25, Alg. 2]. This
way, we ensure that after the rewiring step it holds that if
qP ∈ ViT , then all nodes q′P ∈ S(qP) belong to ViT , as well,
for all robots i. In Section IV, we show that this enables the
parallel execution of the rewiring step while preserving the
probabilistic completeness and asymptotic optimality of the
centralized algorithm [12].

5) Distributed Construction of Paths: The construction of
the subtrees GiT ends after nmax iterations, where nmax is user
specified [line 4, Alg. 2]. Then, every robot i constructs the
set Pi = ViT ∩ X

pre
goal [line 27, Algorithm 2] that collects

all the states qP ∈ ViT that belong to the goal region X pre
goal

defined in (3). Then, every robot i finds paths that correspond
to the prefix parts and connect the states qP ∈ Pi to the
root of the tree qrP . In particular, the path that connects
the α-th state in the set Pi, denoted by Pi(α), to the root
qrP constitutes the α-th prefix part found by robot i and is
denoted by τ pre,Pi(α)

i [line 8, Algorithm 1]. Specifically, the
prefix part τ pre,Pi(α) is constructed by tracing the sequence
of parents of nodes starting from the node that represents the
accepting state Pi(α) and ending at the root of the tree. The
parent of each node is computed by the function parent :
ViT → ViT ∪ {qrP }. This function maps a node qP ∈ ViT to
a unique vertex q′P ∈ ViT if (q′P , qP) ∈ E iT and q′P 6= qrP
or to the root if q′P = qrP . By convention, we assume that
parent(qrP) = qrP . Observe that communication between
robots is not required for the construction of the paths, since
all parent nodes of any node belong to the same subtree,
except for the nodes whose parent is the root.

Next, observe that the time complexity of sampling the
state qnew

PTS in Algorithm 3 is O(
∑
i |Qi|). Moreover, the time

complexity of extending the tree GT = ∪Ni=1GiT towards qnew
P

is O(maxi |ViT |(N + 1)); see Algorithm 4. Also, the time
complexity of the rewiring step is O(maxi |ViT |(N + 1));
see Algorithm 5. Note that the time complexity of extending
and rewiring GT using [12] is O(|

⋃
∀i ViT |(N + 1)) >

O(maxi |ViT |(N + 1)). Similarly, the time complexity of
finding a path from a node qP ∈ ViT to the root qrP of
GT is O(|ViT |) while the respective time complexity of [12]
is O(|VT |) > O(|ViT |). More details and comparisons with
state-of-the-art graph search methods can be found in [12] .

B. Distributed Construction of Suffix Parts

Once the prefix parts τ pre,Pi(α)
i are constructed, the corre-

sponding suffix parts are constructed [lines 9-22, Alg. 1].
Specifically, given a prefix part τ pre,Pi(α), the respective

Fig. 5. Graphical depiction of detecting cycles around a final/accepting
state qrP = Pi(α) (black square) within a subtree GjT . The red diamonds
stand for a state qP ∈ Sjα. Solid red and blue arrows stand for two paths
that connect the states in Sα to the root Pi(α). The dashed red and blue
arrows imply that a transition from a state qP ∈ Sjα to Pi(α) are feasible
according to the transition rule −→P ; however, such a transition is not
included in the set EjT . The two detected cycles around the accepting state

Pi(α), denoted by τ
suf,Pi(α),1
j and τ

suf,Pi(α),2
j are illustrated by solid

and dashed red and blue arrows, respectively.

suffix part τ suf,Pi(α)
j constructed by a robot j is a sequence

of states in QP that starts from the state Pi(α) and ends at
the same state Pi(α), i.e., a cycle around state Pi(α) where
any two consecutive states in τ suf,Pi(α)

j respect the transition
rule →P . To construct the suffix part τ suf,Pi(α)

j , we build
again trees GjT = {VjT , E

j
T ,Cost} that approximates the

PBA P , in a similar way as in Section III-A, and implement
a cycle-detection mechanism to identify cycles around the
state Pi(α). The only differences are that: (i) the root of
the tree is now qrP = Pi(α), i.e., it is an accepting/final
state [line 11, Alg. 1] detected during the construction of the
prefix parts, (ii) the goal region corresponding to the root
qrP = Pi(α), is defined as [line 12, Alg. 1

X suf
goal(q

r
P) ={qP = (qPTS, qB) ∈ QP |

(qP , L(qPTS), qrP) ∈→P }, (8)

and, (iii) we first check if qrP ∈ X suf
goal, i.e., if

(Π|BqrP , L(Π|PTSq
r
P),Π|BqrP) and if the cost of such a self

loop has zero cost, i.e., if wP (qrP , q
r
P) = 0 [line 14, Alg. 1]. If

(iii) holds, the construction of the subtrees GjT is trivial, since
all the trees are empty except for the tree Gi∗T that consists
of only the root, and a loop around it with zero cost [line
15, Alg. 1].3 If qrP /∈ X suf

goal, then the trees GjT are constructed
by Algorithm 2 [line 18, Alg. 1]. For all trees GjT , we define
a set Sjα ⊆ V

j
T that collects all states qP ∈ VjT ∩ X suf

goal(q
r
P)

[lines 16, 18, Alg. 1. Once the trees GjT are constructed, we
compute for each state in the set Sjα, denoted by Sjα(ej),

3Clearly, any other suffix part will have non-zero cost and, therefore, it
will not be optimal and it will be discarded by Algorithm 1 [lines 22-23,
Alg. 1]. For this reason, the construction of the trees GjT is terminated if a
self-loop around qrP is detected.

ej ∈ {1, . . . , |Sjα|}, the path that connects these states to the
root [lines 19- 20, Alg. 1]. These paths correspond to possible
suffix parts constructed by robot j that are associated with
the prefix part τ pre,Pi(α)

i found by robot i and are denoted by
τ

suf,Pi(α),ej
j ; see also Figure 5. Next, every robot j sends the

candidate suffix parts τ suf,Pi(α),ej
j to robot i [line 21, Alg. 1].

The robot i selects as a suffix part the one with the smallest
cost. By construction of the cost functions Cost and Ĵ(·),
it holds that the cost of a suffix part is Ĵ(τ̃

suf,Pi(α),ej
j) =

Cost(Sjα(ej)) +wPTS(Π|PTSSjα(ej),Π|PTSq
r
P). The selected

suffix part is denoted by τ
suf,Pi(α)
i [line 22, Alg. 1]. This

procedure is repeated for all possible roots qrP , i.e., for all
final states detected by any robot during the construction of
the prefix parts [lines 9-11, Alg. 1].

C. Construction of Optimal Discrete Plans

By construction, any motion plan τ
Pi(α)
i =

τ
pre,Pi(α)
i [τ

suf,Pi(α)
i]ω , with Siα 6= ∅, and α ∈ {1, . . . , |Pi|}

satisfies the global LTL specification φ. Given an initial
state q0B ∈ Q0

B , among all the motion plans τP
i(α)

i |= φ
found by all robots, we select the one with the smallest cost
J(τ
Pi(α)
i) defined in (2) [line 23, Alg. 1]. The plan with

the smallest cost given an initial state q0B is denoted by
τq0B [line 24, Alg. 1]. Then, among all plans τq0B , we select
again the one with smallest cost J(τq0B), denoted by τ [line
25, Alg. 1].

Remark 3.3 (Communication rounds): For the distributed
construction of the subtrees GiT three main communication
rounds occur per sample qnew

P = (qnew
PTS,QB(b)). The first

one involves robot i∗ that has to send the sample qnew
P

to the remaining N − 1 robots [line 9, Algorithm 2]. In
the second communication round every robot i that can
propose a candidate parent qprev,i

P for qnew
P has to send its

respective cost Ciqnew
P

to any other robot j [lines 12-13, Alg.
2]. The third communication round concerns the rewiring
step. Specifically, every robot i has to send all the nodes
Di ∪ S(Di) ⊆ ViT to robot inew that has stored qnew

P . Notice
that during the second and the third communication round,
robots can exchange of information asynchronously.

Remark 3.4: Notice that since Algorithm 1 is executed
offline, it can be executed over a connected network of M >
N processors, instead of the network of N robots that are
involved in φ speeding up the control synthesis.

IV. CORRECTNESS AND OPTIMALITY

In this section, we show that the distributed Algorithm 1
is probabilistically complete and asymptotically optimal. In
what follows, we denote by Gn,iT = {Vn,iT , En,iT ,Costd} the
tree that has been built by robot i at the n-th iteration of
the distributed Algorithm 2 for the construction of either
a prefix or suffix part. Similarly, we denote by GnT =
{VnT , EnT ,Costc}, the tree build by [12]. Also, we denote
by Costc(q) and Costd(q) the cost assigned to a state q by
the centralized algorithm [12] and the distributed Algorithm
2, respectively. To prove that Algorithm 1 is probabilistically

complete and asymptotically optimal, we need first to state
the following results.

Lemma 4.1 (Sampling qnew,n
P): Assume that VnT = ∪iVn,iT

for all n ∈ N+. Then if the centralized Algorithm 2 in [12]
can sample a state qnew,n

P = (qnew,n
PTS ,QB(b)) ∈ QP then so

can the proposed distributed Algorithm 2.
Using Lemma 4.1 we get the following result for Vn,iT .
Lemma 4.2 (Set of nodes Vn,iT): For any iteration n ≥ 1

of Algorithm 2 in [12] and the proposed Algorithm 2 it holds
that VnT = ∪iVn,iT .

Then, Lemma 4.2 yields the following two results.
Lemma 4.3 (Extend): Assume VnT = ∪iVn,iT , EnT =

∪iEn,iT and Costc(q) = Costd(q). Then, after extending
the trees GnT and ∪iGn,iT to given a sample qnew,n

P =
(qnew,n

PTS ,QB(b)), with b ∈ {1, . . . , |QB |}, as per the cen-
tralized Algorithm 2 in [12] and the proposed distributed
Algorithm 2, respectively, it still holds that VnT = ∪iVn,iT ,
EnT = ∪iEn,iT and Costc(q) = Costd(q).

Lemma 4.4 (Rewire): Assume VnT = ∪iVn,iT , EnT =
∪iEn,iT and Costc(q) = Costd(q). Then, after rewiring
to a given a sample qnew,n

P = (qnew,n
PTS ,QB(b)), with b ∈

{1, . . . , |QB |} the nodes in GnT and ∪iGn,iT to qnew,n
P , as

per the centralized Algorithm 2 in [12] and the proposed
distributed Algorithm 2, respectively, it still holds that VnT =
∪iVn,iT , EnT = ∪iEn,iT and Costc(q) = Costd(q).

Using Lemmas 4.3-4.4, we have the following result for
the set of edges En,iT , which is then used in Theorem 4.6 to
prove the completeness and optimality of Algorithm 2.

Lemma 4.5 (Set of edges En,iT): For any iteration n ≥ 1
of the centralized Algorithm 2 in [12] and the proposed
distributed Algorithm 2, it holds that EnT = ∪iEn,iT and
Costc(q) = Costd(q), where q ∈ VnT = ∪iVn,iT .

Theorem 4.6 (Completeness and Optimality): The
distributed Algorithm 1 preserves the probabilistic
completeness and asymptotic optimality of the centralized
Algorithm 1 in [12].

Proof: The result is due to Lemmas 4.2 and 4.5, and
the probabilistic completeness and asymptotic optimality of
the centralized algorithm [12].

V. NUMERICAL EXPERIMENTS

In this section, we present two case studies, implemented
using MATLAB R2015b on a computer with Intel Core i7-
2670QM 2.2GHz and 4Gb RAM, that illustrate our proposed
algorithm and compare it to existing methods. The first case
study pertains to a motion planning problem with a PBA that
has ΠN

i=1|Qi||QB | = 4.295×109 states. This problem cannot
be solved by standard optimal control synthesis algorithms,
discussed in Section I, that rely on the explicit construction
of the PBA defined in Section II. In fact, our implementation
of the algorithm presented in Section II-A that relies on
the explicit construction of the PBA cannot provide a plan
for PBA with more than few tens of millions of states and
transitions. This problem cannot be solved by the off-the-
shelf model checker PRISM either, due to excessive memory
requirements. In the second case study, we consider a motion
planning problem with a PBA that has 6,144 states. This

0.5 1 2 3 4

0.5

1

2

3

4

Fig. 6. Figure V-A depicts the transition systems wTSi, for all robots i
used in simulation study I and II. Black disks represent the states of wTSi
and blue edges stand for feasible (undirected) transitions among the states.
Figure 9 shows the evolution of the cost J(τ) of the resulting motion plan τ
for various maximum numbers of iterations, npre

max and nsuf
max of Algorithm 2,

for the case study II. The red line stands for the optimal cost J∗ = 14.6569.
Note that self-loops around the states are not depicted.

state-space is small enough to manipulate and construct an
optimal plan using the standard method described in Section
II-A. In this simulation study, we examine the performance
of the proposed algorithm in terms of optimality. In both
case studies, the weights wi capture distance between states
of wTSi.

A. Case Study I

In the first simulation study, we consider a team of N = 7
robots. The wTS that describes the motion of each robot
has |Qi| = 16 states and 70 transitions, including self
loops around each state; see Figure V-A. The collaborative
task that is assigned to the robots describes an intermittent
connectivity task, defined in our previous work [22]. This
intermittent connectivity requirement can be captured by
a global LTL formula, which for the case study at hand
takes the form φ = [�♦(π`51 ∧ π

`5
2)] ∧ [�♦(π`12 ∧ π

`1
3 ∧

π`14)]∧ [�♦(π`74 ∧π
`7
5 ∧π

`7
6)]∧ [�♦(π`86 ∧π

`8
7)]∧ [�♦(π`147 ∧

π`142)]∧ [�♦(π`125)]∧ [¬(π`51 ∧π
`5
2)Uπ`71]∧ [�((π`51 ∧π

`5
2)→

©(!(π`51 ∧ π
`5
2)U(π`12 ∧ π

`1
3 ∧ π

`1
4)))]. In words, (a) robots 1

and 2 need to meet at location `5 infinitely often, (b) robots 2,
3 and 4 need to meet at location `1, infinitely often, (c) robots
4, 5, and 6 need to meet at location `7, infinitely often, (d)
robots 6 and 7 need to meet at location `8 infinitely often, (e)
robots 7 and 2 need to meet at location `14, infinitely often,
(f) robot 5 needs to visit location `12, infinitely often (g)
robots 1 and 2 should never meet at location `5 until robot
1 visits location `7 to collect some available information,
and (h) once robots 1 and 2 meet at `5, they should never
meet again at `5 until robots 2, 3 and 4 meet at `7. This
LTL formula corresponds to a NBA with |QB | = 16 states,
|Q0

B | = 1, |QFB | = 2, and 116 transitions.
Algorithm 1 was executed over a network of M > 1

processors until a final state and a cycle around it are

detected. When M = 9, subtrees GiT were built for the
construction of the prefix and suffix part that satisfy
∪i|ViT | = 88225 and ∪i|ViT | = 109149, respectively.
Next, we run Algorithm 1 for M = 2 and the centralized
algorithm [12] for the sequence of samples qnew

P that
were generated when M = 9. Figure 7(a) presents the
the total time that the centralized algorithm [12] and the
distributed Algorithm 2 for M = 2 and M = 9 have
spent on extending and rewiring the trees up until the
sample qnew

P = (qnew
PTS,QB(b)) taken at iteration n for the

construction of the prefix part. Observe that the distributed
algorithm is at least twice as fast as the centralized
algorithm and as M increases the total runtime decreases.4

Also, the average size of subtrees assigned to each
processor per iteration n of Algorithm 2, when M = 9, is
[0.456, 0.1156, 0.1751, 0.3199, 0.1537, 0.5173, 1.3350, 0.3353,
0.2905] × 104, while the average size of the global tree
GT = ∪9i=1GiT per iteration n is 3.6982 × 104. The
number of communication rounds per iteration n due to the
distributed extend and rewire operation are shown in Figure
8; see also Remark 3.3. Observe in Figure 8, that as the
size of the subtrees increases, the amount of information
that robots have to exchange increases, as well. Next,
given the detected final states, the construction of the suffix
part follows, where similar runtimes were observed. The
computation of paths over the trees associated with either the
prefix or the suffix part required 0.03 seconds on average.
Given the prefix and suffix part, the resulting motion plan
that satisfies the considered LTL task was synthesized in
0.007 seconds and its cost is J(τ) = Ĵ(τ pre) + Ĵ(τ suf) =
123.4975 + 119.0122 = 242.5097. Notice that the off-the-
shelf model checker PRISM could not verify the considered
LTL specification due to memory requirements. We also
applied NuSMV to this problem that was able to generate
a feasible plan in 1 second approximately with cost equal
to J(τ) = Ĵ(τ pre) + Ĵ(τ suf) = 137.8406 + 137.8406 =
275.6812 while our method found a plan with cost
J(τ) = 242.5097. Notice also that NuSMV can only
generate a feasible plan and not the optimal plan, as our
proposed algorithm does. The optimal control synthesis
method described in Section II-A failed to design a plan
that satisfies the considered LTL formula and so did the
algorithm presented in [18] due to excessive memory
requirements.

B. Case Study II

In the second simulation study, we consider a team of N =
2 robots with the same wTS as in the previous case study.
The assigned task is expressed in the following temporal

4Algorithm 2 was implemented using sequential for-loops entailing
that the robots extend and rewire their subtrees sequentially and not in
parallel. Then, to measure the runtime of extending and rewiring the
subtrees of Algorithm 2, we measure the time required by the ‘slow-
est’ robot to extend and rewire its subtree for a given sample qnew

P ,
which is reported in Figures 7(a)-7(b). Also, notice that the parallel
computing toolbox of MatLab significantly slowed down our vectorized
code; see e.g., https://www.mathworks.com/help/distcomp/
decide-when-to-use-parfor.html.

0 1 2 3 4 5 6 7 8 9

×10
4

0

50

100

150

200

250

300

350

400

450

(a) Simulation Study I

0 0.5 1 1.5 2 2.5

Χ10
4

0

10

20

30

40

50

60

70

80

90

(b) Simulation Study II

Fig. 7. Comparison of the total time spent on extending and rewiring the
graph up until the sample qnew

P = (qnew
PTS,QB(b)) is taken at iteration n,

by the centralized algorithm in [12] and the proposed distributed Algorithm
2. Algorithm 2 is executed over a network of M processors. The runtimes
reported for the second simulation study pertain to the case npre

max = 1500.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

5

10

15

20

25

30

35

40

45

50

(a) Extend

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

12

14

16

18

(b) Rewire

Fig. 8. Simulation Study I: Graphical depiction of the communication
rounds described in Remark 3.3 when M = 9 during the construction of
the prefix part. Figure 8(a) depicts how many candidate parents have been
proposed at iteration n in total. These candidate parents are transmitted
to M − 1 processors. Figure 8 shows the total number of sets of nodes
Di∪S(Di) that are transmitted to the processor that has stored the sample
qnew
P , at the end of the rewiring step. The blue dashed line stands for the

regression line.

logic formula: φ = �♦(π`61 ∧♦(π`142))∧�(¬π`91)∧�(π`142 →
©(!π`142 Uπ

`4
1)) ∧ (♦π`122) ∧ (�♦π`102) where the respective

NBA has |QB | = 24 states with |Q0
B | = 1, |QFB | = 4, and

163 transitions. In words, this LTL-based task requires (a)
robot 1 to visit location `6, (b) once (a) is true robot 2 to
visit location `14, (c) steps (a) and (b) to occur infinitely
often, (d) robot 1 to always avoid location `9, (e) once robot
2 visits location `14, it should avoid this area until robot 1
visits location `4, (f) robot 2 to visit location `12 eventually,
and (g) robot 2 to visit location `10 infinitely often. In this
simulation study, the state space of the PBA consists of
ΠN
i=1|Qi||QB | = 6, 144 states, which is small enough so that

the method discussed in Section II-A can be used to find the
optimal plan. The cost of the optimal plan is J∗ = 14.6569.

Algorithm 1 was run for various values of the parameters
npre

max and nsuf
max. Observe in Figure 9 that as we increase

npre
max and nsuf

max, the cost of the resulting plans decreases
and eventually the optimal plan is found, as expected due
to Theorem 4.6. PRISM verified that there exists a motion
plan that satisfies the considered LTL formula in few seconds
and NuSMV in less than 1 second. However, neither of
them can synthesize the optimal motion plan that satisfies
the considered LTL task. For instance, the cost of the plan
generated by NuSMV is 30.8995 meters while our algorithm
can find the optimal plan with cost J∗ = 14.6569, as shown

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

Fig. 9. Simulation Study II: Evolution of the cost J(τ) of the resulting
optimal motion plan τ for various maximum numbers of iterations, npre

max
and nsuf

max, for Algorithm 2. The red line stands for the optimal cost J∗.

in Figure 9. Figure 7(b) shows the total time required to to
extend and rewire the tree for M = 1, M = 2, and M = 10,
when npre

max = 1500.

VI. CONCLUSION

In this paper we proposed the first distributed, probabilisti-
cally complete, and asymptotically optimal control synthesis
algorithm for multi-robot systems under global LTL tasks.
We showed through simulations that our proposed approach
is computational efficient and can handle larger state-spaces
than existing approaches that construct a synchronous prod-
uct automaton. Future work includes experimental validation.

REFERENCES

[1] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[2] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 583–599, 2016.

[3] Y. Chen, X. C. Ding, and C. Belta, “Synthesis of distributed control
and communication schemes from global LTL specifications,” in 50th
IEEE Conference on Decision and Control and European Control
Conference, Orlando, FL, USA, December 2011, pp. 2718–2723.

[4] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal approach
to the deployment of distributed robotic teams,” IEEE Transactions on
Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[5] C. Baier and J.-P. Katoen, Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[6] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
markov decision processes with linear temporal logic constraints,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1244–
1257, 2014.

[7] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[8] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[9] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[10] A. Ulusoy, S. L. Smith, and C. Belta, “Optimal multi-robot path
planning with ltl constraints: guaranteeing correctness through syn-
chronization,” in Distributed Autonomous Robotic Systems. Springer,
2014, pp. 337–351.

[11] P. Schillinger, M. Bürger, and D. Dimarogonas, “Decomposition of
finite ltl specifications for efficient multi-agent planning,” in 13th
International Symposium on Distributed Autonomous Robotic Systems
address= London, UK, year=November, 2016.

[12] Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control
synthesis for multi-robot systems under global temporal tasks,”
IEEE Transactions on Automatic Control (submitted), 2017. [Online].
Available: https://arxiv.org/pdf/1706.04216.pdf

[13] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
symbolic model checker,” in International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, London,
UK, April 2002, pp. 200–204.

[14] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in International Conference on
Computer Aided Verification. Springer, 2002, pp. 359–364.

[15] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2011, pp. 1478–1483.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for opti-
mal motion planning with deterministic µ-calculus specifications,” in
American Control Conference (ACC), Montreal, Canada, June 2012,
pp. 735–742.

[17] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, November 2013, pp. 4817–4822.

[18] Y. Kantaros and M. M. Zavlanos, “Intermittent connectivity control
in mobile robot networks,” in 49th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November, 2015,
pp. 1125–1129.

[19] Y. Kantaros and M. M. Zavlanos, “Sampling-based control synthesis
for multi-robot systems under global temporal specifications,” in
Cyber-Physical Systems (ICCPS), 8th International Conference on.
Pittsburgh, PA, USA: ACM/IEEE, 2017, pp. 3–13.

[20] D. Boskos and D. V. Dimarogonas, “Decentralized abstractions for
multi-agent systems under coupled constraints,” in Conference on
Decision and Control (CDC),, Osaka, Japan, December 2015, pp.
7104–7109.

[21] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” in 1st Symposium in Logic in Computer
Science (LICS). IEEE Computer Society, 1986.

[22] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” IEEE Transactions on Automatic
Control, vol. 62, no. 7, pp. 3109–3121, July 2017.

[23] T. K. Chandra, The Borel-Cantelli Lemma. Springer Science &
Business Media, 2012.

APPENDIX I
PROOF OF LEMMAS

A. Proof of Lemma 4.1

Recall that the distribution fi∗ is non-zero on [1, 2, . . . , N],
by definition, remains the same for all iterations n, and that
indepednent samples can be drawn from it. Then, using the
second Borel-Cantelli lemma [23] we can show that any
robot i will be selected infinitely often, with probability 1,
to be the robot i∗. The proof of this part is along the lines
of the proofs of Lemmas 5.4-5.5 in [12] and, therefore, is
omitted. Next, following the same logic as in Corollary 5.6
in [12], we can show that show that any state qP ∈ GiT can
be selected to be the state qnew

P . Then, the result follows since
VnT = ∪Ni=1 for all n by assumption.

Remark 1.1 (Lemma 4.1): The result shown in Lemma
4.1 holds even if the density function fi∗ changes with
respect to iterations n, as long as it is bounded below by
a sequence `n(i) such that

∑∞
n=0 `

n(i) =∞, for all i, since
then the second Borel-Cantelli lemma can still be applied.

B. Proof of Lemma 4.2

To show this result we will use induction. Specifically,
notice that at the beginning of iteration n = 1, it holds that
V1
T = ∪iV1,i

T due to the initialization of the set of nodes.
Now, assuming that at the beginning of iteration n ≥ 1, VnT =
∪iVn,iT holds, we show that at the beginning of iteration n+1,
Vn+1
T = ∪iVn+1,i

T holds.
To show that, recall first that during iteration n, |QB |

states qnew,n
P = (qnew,n

PTS ,QB(b)), with b ∈ {1, . . . , |QB |}
are examined sequentially, both by the centralized and the
distributed algorithm, as to whether they can be added to
the tree. Let qnew,n

P = (qnew,n
PTS ,QB(b)) be the first state that

is added to the set VnT for some b ∈ {1, . . . , |QB |}, which
can be sampled by both the centralized algorithm 2 in [12]
and the distributed Algorithm 2 proposed here, as shown in
Lemma 4.1. Since qnew,n

P is added to VnT , it must be reachable
from a state qP ∈ VnT that incurs the minimum possible
cost for qnew,n

P . Since VnT = ∪iVn,iT by assumption, it holds
that qP ∈ Vn,sT , for some robot s. Therefore, there is at
least one candidate parent for qnew,n

P in ∪iVn,iT which will
be detected, since every robot i proposes a candidate parent
for qnew,n

P selected from Vn,iT , by construction of Algorithm
2. Then, the distributed Algorithm 2 will select as a parent
for qnew,n

P the node that results in the minimum possible cost
for qnew

P . 5 Consequently, the state qnew,n
P will be added to

the set of nodes Vn,sT , where s is determined as per lines
13-17, in Algorithm 2. All the other sets of nodes Vn,iT , with
i 6= s remain unaltered. Thus, after the addition of the state
qnew,n
P = (qnew,n

PTS ,QB(b)), it still holds VnT = ∪iVn,iT . Also, if
the state qnew,n

P is not added to the set VnT , then it is not added
to any set Vn,iT either, since there is no candidate parent for
qnew,n
P ∈ VnT = ∪iVn,iT . Finally, notice that the rewiring step

in both the centralized and the distributed algorithm does not
affect the set of nodes. Therefore, after rewiring, it still holds
that VnT = ∪iVn,iT . Using the same logic, we can show that
this result is true for qnew,n

P = (qnew,n
PTS ,QB(b + 1)) as well.

Thus, we conclude that at the end of iteration n, it holds that
Vn+1
T = ∪iVn+1,i

T completing the proof.

C. Proof of Lemma 4.3

At iteration n, let qnew,n
P = (qnew,n

PTS ,QB(b)) be a state that
is added to the set VnT . Then this state qnew,n

P will be added
to the set ∪iVn,iT , as well, due to Lemma 4.2. Now, we want
to show that the edge that is constructed by the centralized
Algorithm 2 in [12] is also constructed by the distributed
Algorithm 2, i.e., that both algorithms select the same parent
for qnew,n

P . To show that, recall that by construction of the
distributed Algorithm 2, the parent of a state qnew,n

P is the
node qprev,j

P that results in the minimum cost for qnew,n
P ,

which is also the case in the centralized algorithm in [12]
Since VnT = ∪iVn,iT by Lemma 4.2, and ∪iEn,iT = EnT and
Costc(q) = Costd(q), ∀q ∈ VnT = ∪iVn,iT hold by assump-
tion, both the centralized and the distributed algorithm will
select the same parent for qnew,n

P . Therefore, the subtrees

5Note that here we do not assume that the centralized and the distributed
algorithm will select the same parent node.

Gn,iT are extended towards qnew,n
P in exactly the same way

as the tree GnT does. This means that after the ‘extend’
operation towards qnew,n

P , it still holds that ∪iEn,iT = EnT
and Costc(q) = Costd(q), ∀q ∈ VnT = ∪iVn,iT . Note
that if the state qnew,n

P = (qnew,n
PTS ,QB(b)) is not added to

the tree constructed by the centralized algorithm then it will
not be added by the distributed Algorithm 2 either, due to
Lemma 4.2. In this case it is trivial to see that ∪iEn,iT = EnT
and Costc(q) = Costd(q), still holds ∀q ∈ VnT = ∪iVn,iT

completing the proof.

D. Proof of Lemma 4.4

To show this result, recall first that the only difference be-
tween the centralized Algorithm 2 in [12] and the distributed
Algorithm 2 proposed here, in terms of the the rewiring step,
is that the centralized algorithm rewires all nodes qP ∈ VnT
sequentially, while Algorithm 2, rewires all nodes qP ∈
∪iVn,iT sequentially within Vn,iT and in parallel across the sets
Vn,iT . Therefore, it suffices to show that rewiring in parallel
two states qP ∈ Vn,iT and q′P ∈ V

n,j
T , with j 6= i, returns

the same result, as if qP and q′P were rewired sequentially.
More specifically, we want to show that rewiring qP does not
affect the cost of q′P and vice versa, since in this case both
nodes can be rewired in parallel. To show this, we will use
the following two observations throughout the proof. First,
by construction of the subtrees Gn,iT and Gn,jT , i 6= j, it holds
that qP /∈ S(q′P) and q′P /∈ S(qP), for all qP ∈ Vn,iT and
q′P ∈ V

n,j
T . Second, rewiring a node affects only the cost

of all its successors or, in other words, the cost of a node
is affected by rewiring one of its predecessors [line 7, in
Algorithm 5]; note that this is the case in both the centralized
and the distributed algorithm.

Let qnew,n
P ∈ Vn,sT , where s can be any robot and possibly

robots i, j. Also, let p be the path, i.e., the sequence of nodes
in Vn,sT , that connects qnew,n

P to the root qrP . To show that the
nodes qP ∈ Gn,iT and q′P ∈ G

n,j
T can be rewired in parallel,

we will consider the following cases about their existence in
the path p.

Assume that neither qP nor q′P belong to the path p. Next
we show that rewiring qP does not affect the cost of q′P ∈
Vn,jT , and vice versa, which means that both qP ∈ Vn,iT and
q′P ∈ V

n,j
T can be rewired in parallel. To show that, observe

first that if the distributed Algorithm 2 rewires one or both
of the nodes qP and q′P to qnew,n

P , then we still have qP /∈
S(q′P) and q′P /∈ S(qP), since before rewiring neither of
them belongs to the path p. This means that the change in the
cost of qP does not affect the cost of q′P and vice versa, since
after rewiring a node, only the cost of all its successor nodes
is updated [line 7, in Algorithm 5]. Therefore, both qP ∈
Vn,iT and q′P ∈ V

n,j
T can be rewired in parallel. Also, since

VnT = ∪iVn,iT , EnT = ∪iEn,iT and Costc(q) = Costd(q)
holds by assumption, if qP ∈ VnT gets rewired to qnew,n

P by
the centralized Algorithm 2 in [12], then so does qP ∈ Vn,iT

by the distributed algorithm. The same holds for q′P , as well.
Thus, after that rewiring VnT = ∪iVn,iT , EnT = ∪iEn,iT , and
Costc(q) = Costd(q) still holds.

Next, assume that either qP or q′P belongs to the sequence
of nodes p (but not both of them). Without loss of generality,
assume that q′P belongs to p, i.e., s = j, which means that
qnew,n
P ∈ S(q′P) ⊆ Vn,jT . First, it is trivial to see that q′P

will not get rewired to qnew,n
P by either algorithms, since

that would increase its cost because qnew,n
P ∈ S(q′P); in fact,

this would also create a cycle that is disconnected from the
subtree. Therefore, the cost of q′P will not change during
the rewiring step and, clearly, this cannot affect the cost of
qP . Next, we examine if the cost of q′P can change due
to possible rewiring of qP . Specifically, if the distributed
algorithm 2 rewires qP then we have that qP ∈ S(qnew,n

P) ⊆
S(q′P), i.e., qP ∈ S(q′P) and, therefore, the cost of q′P is
not affected by that rewiring. Thus, in this case, both qP
and q′P can be considered for rewiring in parallel, since they
cannot affect the cost of each other. Also, as for qP , we
have that since VnT = ∪iVn,iT , EnT = ∪iEn,iT and Costc(q) =
Costd(q) holds by assumption, if qP ∈ VnT gets rewired to
qnew,n
P by the centralized Algorithm 2 in [12], then so does
qP ∈ Vn,iT by the distributed Algorithm 2. Hence, after this
rewiring step VnT = ∪iVn,iT , EnT = ∪iEn,iT , and Costc(q) =
Costd(q) still holds.

In the latter case, observe that if qP gets rewired to qnew,n
P ,

this means that qP ∈ S(qnew,n
P) and, consequently, S(qP) ⊆

S(qnew,n
P) ⊆ Vn,jT , which means that the nodes {qP }∪S(qP)

should belong to robot s = j, since for the construction of
the subtrees we require a node along with all its successors
to belong to the same subtree. However, robot s = j is not
aware of these nodes, until all robots finish rewiring their
nodes and communication between robots occurs; see lines
24-25 in Algorithm 2. In the meantime, according to Algo-
rithm 2, robot i keeps rewiring all nodes in the set S(qP) and
at the end of the rewiring step, these nodes are transmitted
to robot s = j. Note that the fact that robot i rewires a set
of nodes S(qP), where S(qP) ⊆ S(qnew,n

P) ⊆ Vn,jT , does not
result in any inconsistency between the distributed algorithm
and the centralized algorithm in terms of the set of edges and
the assigned costs. The reason is that the only predecessors
of the nodes S(qP) that exist in the tree Gn,jT belong to the
path p, since the parent of qP is the node qnew,n

P , which are
never rewired, as discussed before. Therefore, robot j cannot
affect the cost of the nodes in S(qP) and if robot i keeps
rewiring the nodes S(qP), this cannot affect the cost of any
node in Vn,jT that robot j is currently aware of. Thus, both
the centralized and distributed algorithm perform the same
rewiring steps and, therefore, VnT = ∪iVn,iT , EnT = ∪iEn,iT ,
and Costc(q) = Costd(q) still holds. Also, notice that the
case where both qP and q′P belong to the path p is not
possible, since both nodes belong to different subtrees, by
assumption. Thus, we proved that after rewiring within the
subtrees, it still holds that Gn,iT , VnT = ∪iVn,iT , EnT = ∪iEn,iT

and Costc(q) = Costd(q) completing the proof.

E. Proof of Lemma 4.5

To prove this result we use induction. Specifically, at
iteration n = 1, we have that V1

T = ∪iV1,i
T , E1T = ∪iE1,iT

and Costc(q) = Costd(q), ∀q ∈ V1
T = ∪iV1,i

T due to

the initialization of both the centralized and the distributed
algorithm. Next, assume that qnew,1

P = (qnew,1
PTS ,QB(b)) is the

first sample that can be added to the tree G1T and ∪iG1,iT , with
b ∈ {1, . . . , |QB |}. Then, by Lemma 4.3, we have that after
extending the trees G1T and ∪iG1,iT to the sample qnew,1

P =
(qnew,1

PTS ,QB(b)), with b ∈ {1, . . . , |QB |}, it still holds that
V1
T = ∪iV1,i

T , E1T = ∪iEn,iT and Costc(q) = Costd(q).
Then, due to Lemma 4.4, we have that after rewiring to
qnew,1
P = (qnew,1

PTS ,QB(b)), we get that V1
T = ∪iV1,i

T , E1T =
∪iE1,iT and Costc(q) = Costd(q) still holds. Following
the same logic as above, we can show that V1

T = ∪iV1,i
T ,

E1T = ∪iE1,iT and Costc(q) = Costd(q) holds as well
when the next sample qnew,1

P = (qnew,1
PTS ,QB(b+ 1)) is taken.

Consequently, at the beginning of iteration n = 2, we
have that V2

T = ∪iV2,i
T , E2T = ∪iE2,iT and Costc(q) =

Costd(q), ∀q ∈ V2
T = ∪iV2,i

T . Then, the induction step
follows. Specifically, assume that at iteration n, we have that
VnT = ∪iVn,iT , EnT = ∪iEn,iT and Costc(q) = Costd(q),
∀q ∈ VnT = ∪iVn,iT . Then, using the same logic as above,
we can show that Vn+1

T = ∪iVn+1,i
T , En+1

T = ∪iEn+1,i
T

and Costc(q) = Costd(q), ∀q ∈ Vn+1
T = ∪iVn+1,i

T holds
completing the proof.

APPENDIX II
ANYTIME SAMPLING-BASED ALGORITHM

NuSMV is capable of handling large state-spaces and
returning feasible, but not optimal, paths very fast. There-
fore, we can initialize our trees using the prefix and suffix
part returned by NuSMV and then execute Algorithm 1 to
further decrease the cost of this feasible plan. Due to this
initialization, Algorithm 1 can generate a feasible solution
at any time. Given such a feasible solution that is generated
offline, the robots can execute Algorithm 1 online to optimize
the given motion plan, resulting in an anytime sampling-
based algorithm [15]. Specifically, consider a feasible path
p = ppre[psuf]ω , generated by Algorithm 1, that lives in
VT ⊆ QP such that τ = Π|PTSp |= φ.To improve the prefix
part online, the robots execute only a segment of the prefix
that involves the first k states, i.e., the path τ pre(1 : k) and
delete all subtrees they have constructed for the construction
of p. Meanwhile, they execute Algorithm 1 to build new
subtrees with the root to be the state ppre(k) while one of
the subtrees also includes the path ppre(k + 1 : end), where
ppre(end) stands for the last state in ppre. The goal set in this
case includes only the final state ppre(end). When the robots
reach the state ppre(k), they check if they have found a better
path to replace ppre(k+ 1 : end). If so, they replace the part
ppre(k + 1 : end) with the improved one. The robots repeat
the same procedure for a subsequent segment of the possibly
improved prefix part. This process is repeated until the robots
reach the state ppre(end). The same logic can be applied for
the online execution and improvement of the suffix part. For
instance, given the feasible prefix part ppre constructed in
Section V-A, that has 23 states, we let the robots execute
online only the part ppre(1 : 2) while in the meantime they
run Algorithm 1 to improve the prefix part ppre(3 : 23).
After running Algorithm 1 for 30 seconds and constructing

subtrees with | ∪i ViT | = 4211, the cost of the prefix part
decreased from 123.4975 meters to 113.0122 meters.

