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Abstract— Graph matching is a fundamental problem that
arises frequently in the areas of distributed control, computer
vision, and facility allocation. In this paper, we consider the
optimal graph matching problem for weighted graphs, which
is computationally challenging due the combinatorial nature
of the set of permutations. Contrary to optimization-based
relaxations to this problem, in this paper we develop a novel
relaxation by constructing dynamical systems on the manifold of
orthogonal matrices. In particular, since permutation matrices
are orthogonal matrices with nonnegative elements, we define
two gradient flows in the space of orthogonal matrices. The
first minimizes the cost of weighted graph matching over
orthogonal matrices, whereas the second minimizes the distance
of an orthogonal matrix from the finite set of all permutations.
The combination of the two dynamical systems converges to a
permutation matrix which, provides a suboptimal solution to
the weighted graph matching problem. Finally, our approach is
shown to be promising by illustrating it on nontrivial problems.

I. INTRODUCTION

Given two graphs with weights on edges, the weighted
graph matching problem searches for an optimal permutation
of nodes of one graph so that the difference between the
edge weights is minimized. Graph matching problems arise
frequently in computer vision, facility allocation problems,
as well as distributed control.

In computer vision, matching structural descriptions of an
object to those of a model is formulated as a graph matching
problem [6], [7], [8]. In distributed control and distributed
robotics, graphs are recently emerging as a natural math-
ematical description for capturing interconnection topology
[11] − [17]. Graph matching problems in this context can
be used by a team of robots to reach a particular formation
or minimize a distance from a particular formation. Finally,
in facility allocation, graph matching is similar to the well
known Quadratic Assignment Problem [9], [10].

In addition to its frequent appearance in various fields,
weighted graph matching has also received a lot of attention
due to its hardness. Since, it includes as a special case the
largest common subgraph problem [8], which is NP-complete
[18], it is also NP-complete. In particular, by its similarity
to the quadratic assignment problem, problems with 20-25
nodes are considered very hard, and problems with more
than 30 nodes are practically intractable [10]. Hence, many
relaxations to the problem have been proposed [6], [7], [8],
[9], [10]. In [6] the authors propose a spectral approach to the
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optimal matching problem. They treat weighted graphs with
the same number of nodes and employ an analytic approach
by using the eigen-structure of adjacency matrices (undi-
rected graph matching) or some Hermitian matrices derived
from the adjacency matrices (directed graph matching). An
almost optimal matching can be found when the graphs are
sufficiently close to each other. In [7] the authors propose a
Lagrangian Relaxation Network for the same problem. They
formulate the permutation matrix constraints in the frame-
work of deterministic annealing and achieve exact constraint
satisfaction at each temperature within deterministic anneal-
ing. More recently, semi-definite programming relaxations
for the quadratic assignment problem have been proposed
in [9] and [10]. In particular, in [9] the authors propose a
cutting planes algorithm that provides good solutions.

Since permutation matrices live in the intersection of
the non-convex space of orthogonal matrices and the
space of non-negative (element-wise) matrices, the above
optimization-based approaches relax the non-convex orthog-
onality constraint. In this paper, we take the opposite ap-
proach, and relax the non-negativity constraint by defining
dynamical systems that are, by construction, guaranteed to
evolve on the manifold of orthogonal matrices. In particular,
we construct two gradient flows, one that minimizes the
cost of weighted graph matching over orthogonal matrices,
and a second that minimizes the distance of an orthogonal
matrix from the set of permutations. The combination of
the two dynamical systems converges to a permutation ma-
trix, which provides a suboptimal solution to the weighted
graph matching problem. In the spirit of analog solutions
to combinatorial problems, our approach is inspired by the
so-called isospectral double-bracket dynamical system that
sorts lists and solves various combinatorial problems [1], [2]
(see also [3], [4], [5]). We illustrate our approach in exam-
ples involving more than 50 nodes, which are considered
practically intractable, and also challenging for semi-definite
relaxations using standardized optimization packages. This
shows that our method is very promising. We also argue that,
for applications where mobility is critical, such as distributed
robotics, our approach is also more natural.

The paper is organized as follows: In Section II, we
develop the graph theoretic framework for our problem
and illustrate the relaxation that motivates our dynamical
systems approach. In Section III, we derive in detail the
two gradient flows, characterize their equilibrium points and
discuss how to combine them in order to get a solution to
the graph matching problem. Finally, Section IV illustrates
our approach in large matching problems, and discusses
initialization issues for our method.



II. GRAPH MATCHING

A. Problem Formulation

Let G = (V, E) be a weighted undirected graph with
vertices V = {v1, . . . , vn} and edges in the set E . We define
the weighted adjacency matrix of the graph G to be the
matrix A = (aij), such that aij > 0 if (vi, vj) ∈ E and
aij = 0 otherwise. Since we do not allow self-loops, for
every i ∈ {1, 2, . . . , n} we define aii = 0. Moreover, since
G is an undirected graph, A is a symmetric matrix.

Consider, now, two weighted undirected graphs G1 =
(V1, E1) and G2 = (V2, E2), as before, with |V1| = |V2| = n

and let A1 =
(
a
(1)
ij

)
and A2 =

(
a
(2)
ij

)
be their corresponding

weighted adjacency matrices. Consider the set of positive
integers {1, 2, . . . , n}, and let Sn be the set of permutations
of {1, 2, . . . , n}. The graph matching problem consists of
finding a permutation π? ∈ Sn such that,

π? = arg min
π

∑

i,j

(
a
(1)
π(i)π(j) − a

(2)
ij

)2

We define a permutation matrix P as follows,
Definition 2.1 (Permutation Matrix): An n × n matrix

P = (pij) is a permutation matrix if pij ∈ {0, 1} and,
1.

∑n
i=1 pij = 1 for all j = 1, . . . , n.

2.
∑n

j=1 pij = 1 for all i = 1, . . . , n.
Let Pn denote the set of all permutation matrices of

size n × n. Since the sets Sn and Pn are into one-to-
one correspondence, the graph matching problem can be
reformulated as follows,

min ‖A1 − PT A2P‖2F
s.t. P ∈ Pn

(1)

where ‖·‖F denotes the Frobenius norm defined as, ‖X‖F =(
tr(XXT )

)1/2, for X ∈ Rn×n. Suppose there exists a
permutation matrix P ∈ Pn that makes the objective value
of this minimization problem equal to zero. Then, graphs G1

and G2 are isomorphic. More formally,
Definition 2.2 (Isomorphic Graphs): Two graphs G1 and

G2 are isomorphic if there exists a bijection ϕ from V1 to
V2 such that x ∼ y in G1 if and only if ϕ(x) ∼ ϕ(y) in G2.

where x ∼ y implies that vertices x and y are adjacent
in G1, or in other words, that the edge (x, y) belongs to the
set of edges of the graph G1. Hence, all isomorphic graphs
have the same structure, since one results from another by
simple relabelling of the vertices. The following lemma will
help us connect the notion of isomorphic graphs to that of a
permutation matrix.

Lemma 2.3 ([19]): Let G1,G2 be graphs on the same
vertex set. Then, they are isomorphic if and only if there
is a permutation matrix P such that A2 = PT A1P , where
Ai denotes the adjacency matrix of the graph Gi.

Note that the existence of a permutation matrix P in
Lemma 2.3, does not necessarily imply that it is also the
unique orthogonal matrix satisfying the condition A2 =
PT A1P . To see this, suppose that G1 and G2 are isomorphic.
Let λ1 > λ2 > · · · > λn be the eigenvalues of A1 and A2

(since A2 = PT A1P is a similarity transformation, A1 and

A2 have the same eigenvalues) and A1 = UΛUT and A2 =
V ΛV T be their corresponding eigendecompositions, with U
and V orthogonal matrices. Then, A2 = PT A1P would
imply that V ΛV T = PT UΛUT P and hence, V = PT U or
equivalently P = UV T . Clearly, P is orthogonal, however,
Lemma 2.3 does not imply that it also a permutation matrix.

B. Problem Reformulation

In the spirit of subsection II-A, given any two, in general,
not isomorphic graphs, our goal is to find a permutation
matrix that minimizes the objective function in (1). The
following result provides a lower bound on the value that
‖A1−PT A2P‖2F can attain if the graphs are not isomorphic.

Theorem 2.4 ([6]): Let A1 and A2 be n × n symmetric
matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and
µ1 ≥ µ2 ≥ · · · ≥ µn respectively. Then, ‖A1 − A2‖2F ≥∑n

i=1(λi − µi)2

Since A2 and PT A2P have the same eigenvalues for
any orthogonal matrix P , Theorem 2.4 implies that, ‖A1 −
PT A2P‖2F ≥ ∑n

i=1(λi − µi)2. This general form of the
weighted graph matching problem does not have an analytic
solution. Relaxations critically rely on the structure of per-
mutation matrices being on the intersection of orthogonal
matrices and elementwise non-negative matrices [20]. The
following lemma provides this equivalent representation of
the set of permutation matrices, and gives rise to the relax-
ation that we will adopt in our analysis.

Lemma 2.5: Let On denote the set of n × n orthogonal
matrices and Nn denote the set of n× n elementwise non-
negative matrices. Then, Pn = On ∩ Nn, where Pn is the
set of n× n permutation matrices.

Proof: Let P = (pij) be such that P ∈ Pn. Then,
clearly P is orthogonal and its elements are non-negative.
Hence, P ∈ On ∩ Nn which implies that Pn ⊆ On ∩ Nn.
Now, let P ∈ On ∩Nn. Since P is orthogonal (PPT = I),
for all i 6= j we have,

∑n
k=1 pikpjk = 0. Moreover, since

P is elementwise non-negative, we have that pikpjk = 0 for
all i < j. Let m be the first index such that pmk > 0. Then,
pjk = 0 for all j > m. Since

∑n
i=1 p2

ik = 1 we conclude
that pmk = 1 and pjk = 0 for all j 6= m. Repeating the
same procedure for all the columns of P (k = 1, . . . , n) we
get that every column of P has exactly one entry equal to 1
and the rest n−1 entries equal to 0. Since, the rows P form
vectors of unit magnitude as well, P must be a permutation
matrix. Hence, Pn ⊇ On ∩ Nn which completes the proof.

Lemma 2.5 implies that if we restrict P to be orthogonal
and elementwise non-negative, we get a permutation matrix.
Using this result as well as the fact that P has to be
orthogonal (i.e., PT P = PPT = I), we get an equivalent
representation for the graph matching problem in (1),

min ‖PA1 −A2P‖2F
s.t. P ∈ On ∩Nn

(2)

Clearly, the objective function is convex, since (PA1−A2P )
is affine in P and the Frobenious norm ‖ · ‖2F is convex.
Moreover, the set Nn is also convex. However, the set of



orthogonal matrices On is not convex and so we can not
use the already available tools from convex optimization to
solve this problem. Various approaches have been proposed
in the literature that, most of the times, relax the non-convex
constraint that P ∈ On and, hence, solve a convex problem
to get an approximate solution from which a permutation
matrix is finally extracted [10]. In this paper, we follow
a different approach. In particular we are interested in the
following problem,

Problem 1: Derive a matrix differential equation Ṗ (t) =
f(A1, A2, P (t)), with P (t) ∈ On for all t ≥ 0, that
converges to a limit limt→∞ P (t) = P∞ such that,

1. P∞ minimizes the objective function.
2. P∞ ∈ On ∩Nn.
It is clear from the above problem formulation that P (t)

does not need to belong to the set On ∩ Nn for all time.
However, the limit P∞ has to satisfy both conditions of the
problem. Such an approach is more flexible and we will show
that it also gives good numerical results.

III. GRADIENT FLOWS ON On

In this section we construct two differential equations
that respectively satisfy conditions 1 and 2 of Problem
1, and show how to combine them in order to get the
sought behavior. We construct these differential equations by
defining a gradient flow on the space of orthogonal matrices
for an appropriately chosen cost function V : On → R, as
in [1], [2], [3], [4] and [5]. In particular, we parametrize
the neighborhood of the orthogonal matrix P as, P (Ω) =
P (I +Ω+Ω2/2!+ . . . ), where Ω is skew-symmetric. Define
the matrix inner product as 〈A, B〉 = tr(AT B). Then,
the quantity 〈(∇P V (P ))T , ·〉 represents the gradient of the
function V at P . Using Ṗ = PΩ we can express the gradient
flow as,

PT Ṗ = (∇P V (P ))T

The following, well known, result guarantees that any P (t)
that satisfies the previous matrix differential equation, will
be orthogonal for all t ≥ 0.

Lemma 3.1: Let Ω(t) be skew-symmetric for all t ≥ 0
and define the matrix differential equation Ṗ (t) = P (t)Ω(t).
Then, P (t) ∈ On for all t ≥ 0 if P (0) ∈ On.

In the rest of this section we provide the gradient flow for
the objective function and for a cost function we introduce
in order to penalize negative entries in the orthogonal matrix
P . Finally, we show that by superimposing these gradient
flows we get a solution to the graph matching problem that
is as close as we want to a permutation matrix.

A. Minimizing the Objective Function

Let V1 : On → R be defined by,

V1(P ) =
1
2
‖PA1 −A2P‖2F (3)

The following proposition describes an algorithm that mini-
mizes this function.1

1Due to space limitations we omit the proofs in Subsection III-A.

Proposition 3.2 (Adopted from [1]): Assuming the stan-
dard metric on the orthogonal group, the gradient flow of
the function V1 : On → R defined by V1(P ) = 1

2‖PA1 −
A2P‖2F is given by,

Ṗ = P
[
PT A2PA1 −A1P

T A2P
]

(4)
The following result guarantees that the gradient flow

defined in equation (4) locally minimizes the cost function
V1. Moreover, it characterizes the critical points of this
gradient flow.

Theorem 3.3 (Adopted from [1]): If P (0) ∈ On and Ṗ =
P (PT A2PA1 − A1P

T A2P ), then limt→∞ P (t) = P∞
exists and is a orthogonal matrix of the form P = V ΠSUT ,
with U , V orthogonal, Π a permutation matrix and S a square
root of the identity matrix, i.e., S = diag(±1, . . . ,±1), that
minimizes the value of the objective function V1.

B. Converging to a Permutation matrix
By Lemma 2.5, we can guarantee that P will converge

to a permutation matrix, as long as it flows in the space
of orthogonal matrices, and in the limit, it is elementwise
non-negative. Hence, we need to define a cost function that
penalizes negative entries in P . Inspired by the Big M method
often used in optimization problems to force some variables
be either negative or positive, let V2 : On → R be defined
by,

V2(P ) =
2
3
trPT

(
P − (P ◦ P )

)
(5)

where A ◦B denotes the Hadamard or elementwise product
of the matrices A = (aij) and B = (bij), i.e., A ◦ B =
(aijbij). Since P ∈ On we have PT P = PPT = I and so,
V2(P ) = 2n

3 − 2
3

∑n
i,j=1 p3

ij , and the connection with the Big
M method becomes clear. Thus, minimizing V2(P ) forces
the entries of P to be as “positive” as possible. In particular,
we show that the gradient flow for the cost function defined
in (5) does indeed converge to a permutation matrix. The
following proposition describes the gradient flow of V2(P ).

Proposition 3.4: Assuming the standard metric on the
orthogonal group, the gradient flow of the function V2 :
On → R defined by V2(P ) = 2

3trP
T
(
P − (P ◦ P )

)
is

given by

Ṗ = −P
[
(P ◦ P )T P − PT (P ◦ P )

]
(6)

Proof: Observe that, trPT (P ◦P ) = 1
2

(
tr(P ◦P )T P +

trPT (P ◦ P )
)
. Hence,

V2(P ) =
2n

3
− 1

3

(
tr(P ◦ P )T P︸ ︷︷ ︸

X1(P )

+ trPT (P ◦ P )︸ ︷︷ ︸
X2(P )

)
(7)

Using the first order approximation for the neighborhood of
the orthogonal matrix P , P (Ω) = P (I + Ω), where Ω is
skew-symmetric, we get,

X1(P (I + Ω)) = tr(P ◦ P )T P + tr
[
(P ◦ P )T P − 2P T (P ◦ P )

]
Ω
(8)

where we have neglected terms of the order of Ω2 and have
made use of the relation, tr(PT ◦ΩPT )P = tr(P ◦P )ΩPT .
Similarly,

X2(P (I + Ω)) = trP T (P ◦ P ) + tr
[
2(P ◦ P )T P − P T (P ◦ P )

]
Ω
(9)



where again we have neglected terms of the order of Ω2 and
have made use of the relation, trPT (P ◦ PΩ) = tr(P ◦
P )T PΩ. Substituting equations (8) and (9) in (7) we get,
V2(P (I + Ω)) = V2(P ) − tr

[
(P ◦ P )T P − PT (P ◦ P )

]
Ω.

As before, we may conclude that the quantity 〈[(P ◦P )T P−
PT (P ◦P )

]
, ·〉 represents the gradient of V2(P ) at P . Using

Ṗ = PΩ we can express the gradient flow as PT Ṗ = −[
(P ◦

P )T P − PT (P ◦ P )
]
.

In the rest of this section we show that the gradient flow
defined in (6) decreases the value of the cost function V2(P )
and in the limit, forces the entries of P to become non-
negative. In particular, the following three results establish
that V2(P ) is a Lyapunov function for the system (6) and
characterize its critical points.

Lemma 3.5: Let V2(P ) = 2
3trP

T
(
P − (P ◦ P )

)
. Then,

V2(P ) ≥ 0 for all P ∈ On with equality if and only if P is
a permutation matrix.

Proof: Since, the rows and columns of P form vectors
of unit magnitude, |pij | ≤ 1 for all i, j. Hence, |p3

ij | ≤
p2

ij for all i, j with equality if and only if pij equals 0 or
±1. Summing over j we get, −1 ≤ ∑n

j=1 p3
ij ≤ 1, since∑n

j=1 p2
ij = 1 for all i by orthogonality of P . Clearly, the

right-hand side inequality becomes equality if and only if
pij = 1 for exactly one j and pik = 0 for k 6= j. In the
same way, the left-hand side inequality becomes equality if
and only if pij = −1 for exactly one j and pik = 0 for k 6= j.
Now, summing over i we get, −n ≤ trPT (P ◦ P ) ≤ n,
which clearly implies that V2(P ) ≥ 0 for all P ∈ On with
equality if and only if trPT (P ◦ P ) = n. Following the
previous argument, trPT (P ◦ P ) = n is true if and only if
each row of P has exactly one entry equal to 1 and the rest
of the entries equal to 0. By orthogonality of P , this implies
that such a P is a permutation matrix.

Lemma 3.6: Let P (t) satisfy the matrix differential equa-
tion Ṗ = −P

[
(P ◦ P )T P − PT (P ◦ P )

]
with P (0) ∈ On

for all t ≥ 0, and define the function V2(P ) = 2
3trP

T
(
P −

(P ◦P )
)
. Then, V̇2(P ) ≤ 0 for all t ≥ 0 with equality if and

only if P (t) = SΠ, where S is a square root of the identity
matrix, i.e., S = diag(±1, . . . ,±1), and Π is a permutation
matrix.

Proof: Since (P ◦P )T P−PT (P ◦P ) is skew-symmetric
for all t ≥ 0, P (t) is orthogonal for all t ≥ 0, by Lemma 3.1.
Using equation (7), it can be shown that, V̇2(P ) = −‖(P ◦
P )T P −PT (P ◦P )‖2F . Hence, V̇2(P ) ≤ 0 for all t ≥ 0 with
V̇2(P ) = 0 if and only if (P ◦ P )T P = PT (P ◦ P ). In the
rest of this proof we will explicitly describe the orthogonal
matrices P that satisfy (P ◦ P )T P = PT (P ◦ P ).

Let σ1 ≥ · · · ≥ σn ≥ 0 be the singular values of (P ◦ P )
and let (P◦P ) = UΣV T be its singular value decomposition,
with U and V orthogonal matrices and Σ = diag(σi). We
can show that, PT UΣ2UT P = (P ◦P )T (P ◦P ) = V Σ2V T ,
which implies that Σ2 = V T PT UΣ2UT PV or equivalently,
that UT PV = S and hence, P = USV T for some square
root of the identity matrix S. Thus, there exists an S such
that every critical point P can be written as P = USV T .

Since, (P ◦ P ) = UΣV T we have that,

(USV T ◦ USV T ) = UΣV T (10)

Clearly, Σ = (S ◦ S) = I is a solution to equation (10), by
Corollary 6.2 (see appendix). Moreover, by uniqueness of
the singular values, Σ = (S ◦ S) = I is the unique solution
to equation (10). Hence, by Corollary 6.2 on factoring prop-
erties of Hadamard products, the only way that U and V T

can be factored out from the expression (USV T ◦USV T ) is
when they both are permutation matrices.2 Hence, equation
(10) can only be true if U and V are permutation matrices
and Σ = (S ◦ S) = I . We conclude that every critical point
P has to be of the form P = SΠ, which completes the proof.

Lemma 3.7: Let C = {P | V̇2(P ) = 0} be the set
of critical points of the matrix differential equation Ṗ =
−P

[
(P ◦P )T P −PT (P ◦P )

]
. Then, the only stable critical

points are the permutation matrices.
Proof: Observe that, Ṗ = −P

[
(P ◦ P )T P − PT (P ◦

P )
]

= −P (P ◦ P )T P + (P ◦ P ), which expressed ele-
mentwise becomes, ṗij = −∑n

k=1 pik

∑n
m=1 p2

mkpmj +p2
ij .

It can be shown that the linearization of the system in a
neighborhood of the critical points C = {P | V̇2(P ) = 0} =
{P | P = SΠ} is given by,

ṗij = −
(
si +

n∑
m=1

smπmj

)
pij for all i, j (11)

where Π = (πij), S = diag(si) and,

δij,st =
{

1 if i = s and j = t
0 otherwise

denotes the Kronecker Delta function. Similarly, we can
define δi,s to equal 1 only if i = s and 0 otherwise.

Suppose that si = 1 for all i. Then, ṗij = −2pij for
all i, j and hence, the system is stable. Suppose now that
there exists at least one index k such that sk = −1. Then,
since every row of Π has exactly one entry equal to 1, there
exists an index l such that πkl = 1 and so ṗkl = 2pkl, i.e.,
there exists at least one unstable state. Hence, the only stable
critical points are the permutation matrices Π and the proof
is complete.

We can summarize the results of Lemmas 3.5, 3.6 and 3.7
in the following theorem.

Theorem 3.8: Let P (0) ∈ On and suppose that P (t)
satisfies the matrix differential equation, Ṗ = −P

[
(P ◦

P )T P−PT (P ◦P )
]
, for all t ≥ 0. Then limt→∞ P (t) = P∞

exists and is a permutation matrix.

C. Superposition of the Gradient Flows

Up to this point we have defined two gradient flows on
the space of orthogonal matrices that respectively minimize
their cost functions, while the second one also converges to
a permutation matrix. It is reasonable, thus, to expect that

2Note that, by Lemma 6.1 (see appendix), since USV T is orthogonal,
we can also have the factorization (USV T ◦ USV T ) = USV T with
USV T a permutation matrix. However, by equation (10), this would imply
that Σ = S which contradicts the requirement that Σ ≥ 0.



by combining these two gradient flows we can achieve the
desired behavior of Problem 1. In particular, we consider two
ways of combining the gradient flows. The first approach
superimposes the gradient flows by adding them, whereas
the second approach ignores the nonnegativity requirement
and switches to permutation gradient flow when the objective
has been sufficiently minimized.

Theorem 3.9: Assume that A1 and A2 are weighted ad-
jacency matrices corresponding to the graphs G1 and G2.
Assume further that P (0) ∈ On and suppose that P (t)
satisfies the matrix differential equation,

Ṗ = P
[
PT A2PA1 −A1P

T A2P
]−

−kP
[
(P ◦ P )T P − PT (P ◦ P )

]
(12)

for all t ≥ 0, where k is a positive constant. Then, for
sufficiently large k, limt→∞ P (t) = P∞ exists and approxi-
mates a permutation matrix that also minimizes the distance
‖PA1−A2P‖2F . The larger k is, the better P∞ approximates
a permutation matrix.

Proof: Consider the function V : On → R, defined
by, V (P ) = V1(P ) + kV2(P ), with V1(P ) and V2(P ) as
in equations (3) and (5) resepectively, to be a Lyapunov
function candidate for the system. Clearly, V (P ) ≥ 0 for
all P ∈ On and V (P ) = 0 if and only if G1 and G2 are
isomorphic (in which case P is a permutation matrix). It can
be shown that, V̇ (P ) = −‖X1 − kX2‖2F , where X1(P ) =
PT A2PA1−A1P

T A2P and X2(P ) = (P ◦P )T P−PT (P ◦
P ). Hence, V̇ (P ) is non-increasing which means that P will
converge to a local minimum, P∞. The set of critical points
of V̇ (P ) is C = {P | X1(P ) = kX2(P ), k ≥ 0}. Clearly, if
X2(P∞) = 0, then P∞ = SΠ, with S = diag(±1, . . . ,±1)
and Π a permutation matrix (Lemma 3.6). Hence, as in
Lemma 3.7, linearizing (12) around C, we can show that
for sufficiently large k, the only stable critical points are
permutation matrices.

Assume that we want P∞ to be in an ε neighborhood
of a permutation matrix, for some ε > 0, i.e., we want
P∞ to satisfy a condition of the form ‖X2(P∞)‖ < ε.
Since, P∞ ∈ C the equation X1(P∞) = kX2(P∞) implies
that ‖X1(P∞)‖ = k‖X2(P∞)‖. Hence, ‖X2(P∞)‖ < ε
if and only if 1

k‖X1(P∞)‖ < ε. So, by choosing, k >
1
ε maxP∈On ‖X1(P )‖ we can guarantee that P∞ will be
as close as we want to a permutation matrix. Clearly, the
larger k is, the smaller ε can be. Note at this point that
max
P∈On

‖X1(P )‖ is bounded since ‖X1(P )‖ is a continuous

function of P on the compact space of orthogonal matrices
On. Hence, k is well defined.

It is clear from Theorem 3.9 that if we want P to converge
exactly to a permutation matrix, we should choose a very
large value for k. In this way, however, we lose track of the
other objective which is to find the permutation matrix that
minimizes the distance between the weighted graphs G1 and
G2. Hence, there is a tradeoff between how close the final
solution is to a permutation matrix and how well it serves
as a minimizer of the objective function (3). Intuitively,
however, the closer P is to the optimal permutation matrix,

the less k affects the performance of the algorithm, since
in this case, it only affects the speed of convergence to
that permutation matrix. In other words, initialization of the
problem is important. In order to take advantage of this fact,
we can think of the following hybrid scheme for our problem.

P (0) ∈ On
PhaseI−→ P ? ∈ On

PhaseII−→ Π ∈ Pn

In Phase I we apply the gradient flow (4) to minimize the
objective function V1, and use its solution P ? as a “good”
initial condition for Phase II of our hybrid scheme, where
we apply the gradient flow (12) with sufficiently large k in
order to converge to a permutation matrix Π. In the following
section we implement our dynamical systems approach to
weighted graph matching problems.

IV. SIMULATION RESULTS

In the previous sections we developed two provably correct
gradient flows on the space of orthogonal matrices and
discussed how we can combine them for the case of the
weighted graph matching problem. In this section we discuss
some heuristics and show that our algorithm gives very good
results in practice.

Note first, that the space of orthogonal matrices On con-
sists of two connected components, one with elements having
determinant 1 and one with elements having determinant −1.
Since, the gradient flow we defined on On remains, for all
time, in the connected component in which it was initialized,
we need to sample both connected components, at least once
each, and take the best solution. Moreover, since initialization
of the problem is important, we choose to employ the hybrid
scheme we discussed earlier, where we first apply dynamical
system (4) to minimize the objective function V1 and get a
“good” solution P ? (that is orthogonal but not a permutation
matrix), which we then use as a “good” initial condition for
the combined dynamical system in order to converge to a
permutation matrix Π.

We implemented our algorithm with random weighted
adjacency matrices A1 and A2, and initialized the first phase
of our hybrid scheme with random orthogonal matrices (we
sampled both connected components of On). Bellow one can
see an instance of the final permutation matrix Π that our
algorithm gave in the case of a 10×10 graph matching prob-
lem with weighted adjacency matrices randomly generated
from the uniform distribution.

Π4:10,3:6 =




0.0022 0.0031 1.0000 −0.0020
−0.0004 0.0001 0.0019 1.0000
−0.0002 0.0005 −0.0013 −0.0030

0.0005 0.0031 −0.0027 −0.0024
−0.0001 0.0024 −0.0011 −0.0015

0.0012 1.0000 −0.0031 −0.0001
1.0000 −0.0012 −0.0022 0.0004




One can also get an idea about how much the objective
function is minimized in each phase. In the following table
we present the value of the objective function V1(P ) =
1
2‖PA1 − A2P‖2F at the end of the two phases of the
algorithm for the previous problem, i.e., for P = P ? and
P = Π.



Initialization Phase I Phase II
det = −1 34.8605 0.1527 5.9719
det = 1 36.5412 0.1527 5.9672

It can be seen that the final solution results in an objective
value approximately six times smaller than the initial one.
This considerable decrease in the objective function gives
rise to the question of how close the final solution is to
the optimal one. Since, we do not have any global results,
but only guarantees that the algorithm will converge to a
local minimum, we compared the best solution, i.e., the
solution Π such that V1(Π) = 5.9672, with a sample of 106

randomly generated 10 × 10 permutation matrices P (there
are 10! = 3, 628, 800 such permutation matrices in total). We
observed that V1(Π) ≤ V1(P ) for approximately 96% of the
samples P . Hence, roughly speaking, we may conclude that
our algorithm does indeed provide a very good solution to
the weighted graph matching problem.

Finally, we implemented our method for problems of size
50 × 50. In the following table we present the value of the
objective function V1(P ) = 1

2‖PA1 −A2P‖2F at the end of
the two phases of the algorithm.

Initialization Phase I Phase II
det = −1 800.6253 0.3473 162.0595
det = 1 807.1942 0.3416 169.3697

Again we notice a significant decrease in the value of the
objective function. More important, however, is the running
time of the algorithm, which makes us believe that it could
be a promising idea for further research. In particular, on an
Intel Centrino 2GHz with 1Gb memory laptop, using Matlab
6 and low level programming (Runge-Kutta 4 with constant
step size), it took on average 30 mins for the first phase
to terminate and 3 mins for the second phase. It is worth
noting that on the same laptop and using SeDuMi, we failed
to solve semidefinite programming relaxations (of the non-
convex orthogonality constraint) of the same size.

V. CONCLUSIONS

In this paper, we considered the problem of finding the
optimal relabelling of the vertices of a graph so that its
distance from some reference graph is minimized in the
Frobenious norm sense. We relaxed the combinatorial nature
of the problem by giving an equivalent representation for the
set of permutation matrices as the intersection of the space
of orthogonal matrices with the set of elementwise non-
negative matrices. This representation gave rise to defining
two gradient flows on the space of orthogonal matrices,
such that one minimizes the distance of the two graphs
and the second converges to a permutation matrix. We
discussed superimposing the two gradient flows to apply
them to the weighted graph matching problem, as well as
initialization and a hybrid scheme for combining the two
dynamical systems. Our algorithm is provably correct and
the simulations illustrate our theoretical results, as well as
the high performance achieved when combined with the
proposed heuristics.
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VI. APPENDIX

Factoring properties of the Hadamard product (stated
without proof due to space limitations).

Lemma 6.1: Let U, V ∈ On. Then, (UV T ◦UV T ) = (U ◦
U)V T if and only if V is a permutation matrix.

Corollary 6.2: Let S = diag(±1, . . . ,±1) and U, V ∈
On. Then, (USV T ◦ USV T ) = U(S ◦ S)V T if and only if
U and V are permutation matrices.


