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Abstract—In this paper we propose an acoustic source iden-
tification algorithm to localize multiple sources in non-trivial
domains. We capture the physics of the acoustic wave prop-
agation via the Helmholtz partial differential equation. Given
a set of noisy complex pressure measurements of an acoustic
field, we formulate an optimization problem to solve for the
locations, shapes, and intensities of the sources that minimize the
discrepancy between the observed pressure measurements and
those predicted by the model. We parametrize each source with
a nonlinear function that depends on a small set of parameters,
greatly reducing the dimension of the problem. We present an
initialization method for the resulting nonlinear optimization
problem. We present experimental results showing the ability of
our method to correctly identify multiple acoustic sources in a free
field domain as well as a domain with obstacles and reflecting
boundaries. Moreover, we show that our method can identify
more interesting properties of the source field, such as relative
phase difference between sources.

I. INTRODUCTION

Source identification refers to the estimation of the location,
shape, and intensity of possibly multiple sources given a set of
measurements of the quantity generated by the action of these
sources [1]–[3]. In this work, we focus on acoustic source
identification. In the robotics literature, this often coincides
with detecting the direction of an acoustic source relative to a
robot. Many methods have been proposed for this purpose.
Binaural methods try to mimic the human auditory system
with two microphones acting as a left and right ear. A robotic
system built on this concept is presented in [4] that utilizes
cross correlation to calculate time delays between a pair of
microphones and orient a robot toward a perceived source.
Since the information obtained with only two microphones is
limited, arrays utilizing many microphones have been pursued
more heavily. Time difference of arrival is a popular array
processing technique in which the time delay of the received
signal is calculated between pairs of microphones to determine
the oncoming angle using the array geometry. In [5], an array
of 8 microphones on a robot is used to point a camera at a
sound source in a reverberant room. The work presented in
[6] guides a robot to localize a sound source in a reverberant
environment based on echo-free onset detection along with
time difference of arrival. These methods perform poorly in
the presence of high reverberation and are limited to Line-Of-
Sight (LOS) measurements. Furthermore, they cannot identify
multiple sources.
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More sophisticated array processing techniques have also
been presented in the robotics literature. The well known
Multiple Emitter Signal Classification (MUSIC) method [7]
estimates the direction of multiple sources through a singular
value decomposition of the covariance matrix of an array of
microphones. Many extensions of this algorithm have been
proposed. For example, in [8], the authors address the chal-
lenge of high-power noise by using a Generalized Singular
Value Decomposition (GSVD-MUSIC). This assumes that the
response matrix of the array is available for different source
locations which is hard to obtain in complex domains where
multi-path propagation is present and when the array is not
assumed to be fixed in space. A survey of acoustic source
localization techniques in robotics applications is presented in
[9] with an in depth discussion of these different methods.

In this paper, we propose an algorithm to solve the acoustic
source identification problem in more complex domains where
multi-path propagation is present and the source(s) may not
be in direct LOS. Most relevant to the approach presented
here are methods that incorporate the physics of the acoustic
wave propagation. A popular physics-based method is time
reversal. Due to the invariance of the wave equation under
a time reversal operation, a set of sensors can record a
source signature, reverse the signals in time and transmit them
such that they synchronously converge on the original source
location [10]. In [11], the authors investigate time reversal in an
urban environment by simulating received signals backward in
time with a Finite Difference Time Domain (FDTD) method.
In [12], the authors show time reversal refocusing inside a
room, and through a wall. Time reversal breaks down in the
presence of multiple sources.

Optimization based approaches that incorporate the under-
lying wave propagation physics have been investigated in
simulation. The cosparse regularization approach is discussed
in [13] and specifically formulated for source localization in
[14]. Many optimization based approaches discretize the wave
Partial Differential Equation (PDE) with the FDTD method
and solve an optimization problem for the discretized source
and/or pressure field that satisfy the model while minimizing
the error between measurements and model prediction. The
authors in [15] show that non-LOS signals can be used to
locate multiple sources behind a wall. In [16], the authors
simulate source reconstruction in a 2D square domain with
impedance boundary conditions. In [17], the authors consider a
time harmonic field and discretize the Helmholtz PDE with the
Finite Element Method (FEM). However, this work assumes
an explicit mapping from source to pressure is available, which
for realistic large scale problems, is not the case.

In this work, we pose the source identification problem as
an inverse problem in the frequency domain that estimates the



location and intensity of possibly multiple sources in a known
domain given a set of noisy pressure measurements. We for-
mulate an optimization problem that measures the discrepancy
between our observed measurements and those predicted by
the Helmholtz PDE. This requires the domain geometry and
boundary conditions, but does not require the computation
of the response for every candidate source location as in
array processing techniques (MUSIC), making it general and
applicable to many different environments. We parametrize the
sources with a very small set of parameters as opposed to the
full discretized field [13]–[17], greatly reducing the dimension
of the problem. We present real experimental results showing
the ability of our approach to localize multiple acoustic sources
in a non-trivial domain. To the best of our knowledge, this
work presents the first optimization-based acoustic source
identification algorithm investigated in practice. An additional
contribution lies in the ability of our method to identify
more interesting properties of the source field such as shape,
intensity, and phase of each source. The existing optimization-
based approaches cannot discern such details, and their use has
only been investigated in simulation on simple problems.

The rest of this paper is organized as follows. In Section
II, we define the acoustic source identification problem and
formulate it as a nonlinear optimization problem. In Section III,
we present our solution method including a computationally
efficient way to calculate the gradient and a method for ini-
tialization of the nonlinear optimization problem. In Section IV
we present our experimental setup and results for localization
of multiple sources in a complex domain before concluding in
Section V.

II. PROBLEM DEFINITION

A. Helmholtz Partial Differential Equation

Let Ω ⊂ R3 denote the domain of interest. The acoustic
pressure p̂(x, t) (fluctuations around ambient pressure) as a
function of space, x ∈ Ω and time, t ∈ R+, can be captured
by the 3-dimensional linear wave equation

∇2p̂− 1

c2
∂2p̂

∂t2
= ŝ (1)

where c is the speed of sound in the medium and ŝ(x, t) is the
driving source. Applying the Fourier transform to the above
equation results in the Helmholtz Equation

∇2p+ k2p = s (2)

where k = ω/c is the wave number corresponding to angular
frequency ω, with p and s being the Fourier transform of the
pressure and source, respectively.

After discretization of the Helmholtz PDE with the Finite
Element (FE) method using a mesh with n grid points, we
arrive at a linear system of equations

Ap = Rs (3)

where A = K + iωC− ω2M, and K, C, M and R ∈ Rn×n
are sparse matrices that depend on the boundary conditions
and type of elements used. See [18] for details. The vectors p,
s ∈ Cn are the complex valued pressure and source functions,
respectively, evaluated at the nodes of the FE mesh.

In order for the PDE (2) to have a unique solution, condi-
tions must be specified on the boundary of the domain ∂Ω. For
the discretized PDE (3), uniqueness means A is non-singular.
In this paper, we work with two kinds of boundary conditions.
First, the sound-hard wall corresponding to a homogeneous
Neumann boundary condition, ∇p(x) · n(x) = 0, x ∈ ∂ΩN ,
where n(x) is the outward unit normal to the boundary and
∂ΩN ⊂ ∂Ω refers to the portion of the boundary where
a Neumann condition is specified. A zero-valued Neumann
condition means that acoustic waves hitting ∂ΩN are perfectly
reflected back into the domain. The second type of boundary
condition encountered in this paper is the Sommerfeld radiation
condition given as, lim|x|→∞ |x|

(
∂
∂|x| − ik

)
p(x) = 0. This

condition imposes that waves normal to the boundary travel
off to infinity and are not reflected back into the domain. This
boundary condition is imposed on sound absorbing boundaries
or when trying to simulate a free field environment.

B. Optimization Problem

Consider m stationary microphones deployed in the domain
Ω that take measurements of the pressure field p̂(x, t). After
taking the Fourier transform of the recorded signals, the vector
of complex pressure measurements y ∈ Cm can be extracted
at the desired frequency ω. The acoustic source identification
problem can now be defined as follows.

Problem 2.1 (Acoustic Source Identification): Given a set
of m noisy complex pressure measurements y, estimate the
source vector s such that those measurements y are as close as
possible in a least squares sense to the pressure vector predicted
by the discretized Helmholtz equation (3).

Problem 2.1 can be formulated as a constrained optimization
problem in the following way. Let Q ∈ Rm×n be a boolean
matrix such that multiplication with the pressure vector p
returns the pressure at the nodes corresponding to locations
where measurements were taken. Define the cost function
J (p, s) = 1

2‖Qp − y‖2, where the norm is taken in the
complex sense, i.e., ‖z‖2 = zHz, where the superscript H
denotes the complex conjugate transpose. Then we can define
the following optimization problem

min
p,s

J (p, s) (4)

s.t. Ap = Rs.

The goal is to obtain the set of pressure and source vectors
that obey the physical model while matching the observed
measurements as close as possible in a least squares sense.

III. ACOUSTIC SOURCE IDENTIFICATION

A. Source Parametrization

Rather than solve problem (4) in the full space of pressure
and source vectors, we can solve the problem in the reduced
space of source vectors, s, while enforcing the model. Specif-
ically, we can use the model to represent the pressure p as
a function of the source s, i.e., p = F(s) = A−1Rs and
then move along the gradient of the cost function Ĵ (s) =
J (F(s), s) to find the source s that minimizes this cost



function. Based on the fact that A is invertible, as discussed
in II-A, this mapping F exists and is unique.

Let M̂ = QA−1R such that M̂s ∈ Cm corresponds to
the vector of complex pressure values at the locations where
measurements were taken. Due to the size of the matrix A for
large FE meshes, its inverse can not be formed. Instead, we
will obtain the gradient of Ĵ exactly with two linear system
solves of size n, where n is the size of the FE mesh.1 Assume
the source s can be parametrized by a small set of parameters
rather than the full n dimensional vector. Specifically, we
assume that each individual source in the domain Ω can be
represented by a simple nonlinear basis function g(x;θ) that
depends on a low-dimensional parameter vector θ ∈ Rp with
p � n. The specific form of g used will be discussed in the
next section. Therefore, for a domain with k sources, the source
function s can be formed as

s(x) =

k∑
i=1

βig(x;θi) (5)

with βi ∈ C, 1 ≤ i ≤ k being the maximum intensity
(magnitude and phase at a specific frequency) of source i and g
is real-valued. The vector s in (3) can be formed by evaluating
each g(x;θi) at the nodes of the FE mesh and then summing
them up according to (5). Let g denote the n dimensional
vector of the function g evaluated at the FE mesh nodes. Then,
the function Ĵ can be written as

Ĵ ([θ1, β1, . . . ,θk, βk]) =
1

2
‖M̂s− y‖2. (6)

where s is formed with [θ1, β1, . . . ,θk, βk] and (5). We can
now define the optimization problem to solve the acoustic
source identification problem for the set of source parameters
and intensities θi, βi for 1 ≤ i ≤ k as

min
[θ1,β1,...,θk,βk]

Ĵ (s) (7)

s.t. θi ∈ Θ

βi ∈ B

where Θ and B are feasible parameter sets for each θi and βi,
respectively.

B. Gradient Derivations

By treating each source intensity βi ∈ C as a two-
dimensional real vector βi = [R(βi), I(βi)]

T ∈ R2,
where R(·) and I(·) refer to the real and imaginary com-
ponents of the argument respectively, we can evaluate the
gradient with respect to each θi and βi as real par-
tial derivatives. The partial derivatives of the cost func-
tion Ĵ that need to be calculated are ∇θi

Ĵ , ∇R(βi)Ĵ ,
and ∇I(βi)Ĵ . Expanding the norm in (6) results in
Ĵ (s) = 1

2

(
sHM̂HM̂s− sHM̂Hy − yHM̂s + yHy

)
. Then,

since each term is a complex-valued scalar, we can rewrite
yHM̂s as (yHM̂s)H = sHM̂Hy, where (·) refers to the
complex conjugate of the argument. Then since z + z =
2R(z) for any complex number z, we arrive at Ĵ (s) =

1Forming A−1 would be equivalent to n linear systems solves of size n.

1
2

(
sHM̂HMs− 2R(sHM̂Hy) + yHy

)
. Now, we can take

the partial derivatives with respect to the source parameters
where the vector s is the only term that depends on θi and βi
by (5). Specifically, we have that

∇θiĴ = (∂g/∂θi)
TR

(
βiM̂

H(M̂s− y)
)

(8)

∇R(βi)Ĵ = g(θi)
TR(M̂H(M̂s− y)) (9)

∇I(βi)Ĵ = g(θi)
TI(M̂H(M̂s− y)). (10)

As expected the gradients are real-valued. The factoring of
the terms in the gradients above is important computationally.
Since the inverse of the FE system matrix A is never explicitly
formed, the product M̂s represents one n × n linear system
solve (3). After the subtraction of the vector y, M̂H(M̂s−y)
represents another linear system solve of size n. Therefore, as
the optimization problem (7) is solved iteratively, the gradient
can be obtained exactly with two linear system solves of size n.
The rest of the gradient calculation requires just matrix-vector
multiplication.

C. Initialization

The introduction of the nonlinear basis functions g cause the
optimization problem (7) to be nonlinear. Due to this fact, good
initialization of the problem is needed to obtain a reasonable
solution and avoid getting trapped in undesirable local minima.
Since we expect the area covered with sources to be small in
comparison to the domain size, we expect ‖Rs‖2 in (3) to
be small which means ‖Ap‖2 should also be small. We can
define an unconstrained optimization problem

min
p
‖Qp− y‖2 + τ‖Ap‖2 (11)

where τ > 0 is a regularization parameter. This problem opti-
mizes over the pressure vector as opposed to the source vector
and minimizes the discrepancy between measurements while
also enforcing ‖Rs‖2 to be small. We can compute the solution
to (11) in closed form as p∗ =

(
QTQ + τAHA

)−1
QTy.

Then the right hand side of (3) can be obtained as Ap∗,
which gives a rough estimate of the source term. Therefore,
letting w(x) = Ap∗ ∈ Cn, an initial estimate for the source
can be found through thresholding as ŵ(x) = |w(x)| if
|w(x)| > α|w|max and 0 otherwise with α ∈ (0, 1), where
|·|max refers to the maximum complex scalar magnitude across
all entries of w(x). We threshold the magnitude of the complex
field w(x) and look at the coordinates x ∈ R3 of the nonzero
entries in ŵ(x). A simple clustering algorithm can be applied
to these nonzero nodes to determine the possible number of
sources and their center locations. Furthermore, since w(x) is
a complex-valued field, it informs not only the initialization of
the locations of the sources, but also the relative phase of each
source, i.e., the phase of βi. After performing the clustering
to determine possible locations, we take the estimated center
coordinate x0i for source i and calculate the phase of the field
∠(w(x0i)) at the point x0i for each source. Source intensities
βi ∈ C are initialized with magnitude 1 and this corresponding
phase.



Fig. 1: Experimental setup. Pictured are two speakers (sources), two reflecting
walls.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Experiments were performed in an anechoic chamber which
simulates a free-field environment. Acoustic waves impinging
on the wall are absorbed by foam and not reflected back into
the chamber. In order to make the domain more interesting,
two eight by four foot MDF wood panels were placed in the
domain to create acoustic reflecting surfaces. A tool box was
also placed within the domain making it a non-convex mesh
and introducing more multi path propagation and reflecting
surfaces. The setup is displayed in Figure 1.

Time harmonic fields were generated using two Optimus
XTS 40 speakers. The speakers were driven with a mixture
of pure sine wave tones from a Data Translation DT9857E
signal conditioning board. Four half-inch free-field polarized
microphones Model 377B02 from PCB electronics were uti-
lized to take the acoustic pressure measurements. Only four
microphones were available for the experiment, however lo-
calization of multiple sources in complex domains requires
more than four measurements of the acoustic field. In order to
overcome this equipment limitation, multiple trials were run
in which a stand with four microphones placed at different
vertical positions was moved to different locations in the
domain. For each trial, the speakers received the same driving
signal from the signal conditioning board and therefore the
recorded signals could be synchronized in time across the
different trials making it appear that the microphones across
different trials were all recording the same experiment. For

each trial, the speakers started emitting while the microphones
started recording at time t = 0. We allowed the domain to
reach steady state and then selected the same two-second time
slice of the recording on each microphone. After taking the
FFT of the microphone signal, the specific frequency of interest
can be extracted from each microphone to create the complex
acoustic pressure measurement vector y used as the input data
to the optimization problem (7).

Since the source identification problem is solved using
complex pressure measurements in the frequency domain, both
the magnitude and the phase of the pressure measurements
is important information for solving the problem. Therefore,
without time synchronization of the measurements across the
different trials, the phase difference that would exist across
measurements would affect the obtained solutions. The coor-
dinates of the measurement locations as well as the coordinates
of the speakers were measured using 8 OptiTrack localization
cameras installed along the top edge of the walls in the
anechoic chamber.

B. Source Model
Across all experiments, 400 Hz was utilized as the input

frequency for the model (3) and the frequency component to
extract from the FFT for the measurement vector y. In general,
lower frequencies translate to coarser FE meshes needed to
accurately capture the acoustic field, which speeds up com-
putation. The selected frequency translates to a wavelength
λ ≈ 0.85 meters, which is large in comparison to the size of the
speaker generating the sound. For this reason, the speakers can
be treated as monopole radiators that radiate acoustic energy
equally in all directions [19]. This uniform directivity was
tested and verified in experiment. This motivated the use of a
Gaussian-like basis function g(x;θi) in equation (5) to model
the sources, given as, g(x;θi) = exp{λi‖x − ci‖2}, where
θi = [ci, λi]

T . The parmeter ci ∈ R3 defines the source
location, i.e. where the value of g(x;θi) is maximum, and
the parameter λi ∈ R++ defines the ”spread” of the source,
or how fast the intensity decays as you move away from the
source’s center. Although this source basis function is nonzero
over the whole domain Ω, for practical purposes, its value
can be considered zero far enough from the center. From a
computational perspective, this source model is simple and
differentiable with respect to its parameters.

Given this source model, solving the acoustic source iden-
tification problem amounts to minimizing (7) with respect
to [θ1,β1, . . . ,θk,βk]T ∈ R6×k. In order to solve prob-
lem (7) numerically, we utilized Matlab’s fmincon nonlinear
constrained optimization package. A trust region algorithm
was utilized in which we supplied the gradient and Hessian
information. Derivation of the Hessian is omitted for brevity.
We placed bound constraints on the location parameters ci ∈ Ω
to reside in the domain as well as bound constraints on the
intensities and spread parameters.

C. Multiple-Source Free-Field Results
As a first test of our method, we took measurements without

any obstacles in the domain to simulate a free-field environ-
ment. We modeled the domain as a 3D rectangular prism with
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Fig. 2: Free-field domain with two sources using 64 measurements.

# of measurements 64 125 196
source 1 initial error 14.2 % 9.1 % 4.9 %
source 1 final error 6.2 % 3.9 % 2.4 %
source 2 initial error 9.1 % 7.7 % 10.5 %
source 2 final error 3.1 % 2.7 % 1.8 %

TABLE I: Source Localization error vs. number of measurements used for
free-field domain.

dimensions [−0.65, 0.65] × [−1.65, 1.65] × [−0.25, 0.25] in
meters with a mesh with roughly 40,000 nodes. The Sommer-
feld radiation condition was enforced on all boundaries. We
positioned two speakers at either end of the domain and took
measurements of the pressure field in between the speakers.
The microphone stands were moved between trials so as to
create a uniform collection of measurement points throughout
the domain. A total of 196 locations were taken for this
experiment. Results for using 64 of the 196 measurements are
shown in Figures 2 - 3. The 64 measurements were selected as
a uniform grid from the 196 available measurements. Figure 2
shows the localization results for the two sources. Figure 3(a)
shows a color map of the magnitude of the complex pressure
at the measurement points coming from the experiment and
Figure 3(b) shows the magnitude of the field from doing a
forward solve of the PDE given the returned source solution
from the optimization algorithm. The color maps show good
agreement meaning the algorithm is correctly finding sources
that match the measured field.

The reduction in localization error for each source is sum-
marized in Table I. This error was calculated by dividing
the distance from the true source location for each source
by the characteristic size of the domain `, taken to be the
distance between opposite corners of the domain. Specifically,
the error, err, was calculated as err = ‖ci − ctrue‖2/`. The
error was calculated for the initial source locations returned
from the initialization procedure outlined in Section III-C as
well as the error in the returned solution of the optimization
problem (7). It can be seen that the algorithm correctly reduces
the initial localization error with better reduction when more
measurements are used.

The results presented for the two source, free-field case thus
far were for an experiment where the two speakers were driven
in phase. By switching the positive and negative connections
for one of the speakers, the two speakers were driven 180
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Fig. 3: Magnitude of complex pressure at 64 measurements locations for free
field domain. (a) shows the pressure magnitudes from the experiment. (b)
shows the pressure magnitudes at the measurement locations after doing a
forward PDE solve given the returned solution. Good agreement can be seen
between solution and experimental data.

In-Phase 180 Degrees Out of Phase
Phase β1 -83.4 112.5
Phase β2 -75.0 -122.5
Phase Difference 8.4 235.2

TABLE II: Relative phase difference of free-field experiment with two sources.

degrees out of phase, resulting in a different pressure field.
Using the same set of measurement locations, but with the
speakers driven out of phase, our algorithm was able to cor-
rectly detect this difference and optimize the βi’s accordingly.
The results of the relative phase difference between the sources
is summarized in Table II.

D. Multiple-Source Non-Free-Field Results

With the experimental setup shown in Figure 1, mea-
surements were taken at 248 locations in the domain. This
domain was also modeled as a rectangular prism of dimensions
[0, 2.36] × [0, 1.14] × [0, 2.82] in meters with a mesh of ap-
proximately 20,000 nodes. The sound-hard Neumann boundary
condition was applied to the portions of the wall with the MDF
wood panels as well as the surface of the tool box. The Som-
merfeld radiation condition was applied to all other parts of the
boundary, i.e., the boundaries consisting of absorbing foam. As
expected in a more complex domain, many measurements of
the field are needed to resolve ambiguities in possible source
locations. With few number of measurements, higher readings
near reflecting boundaries could be interpreted as being close



# of measurements 163 248
source 1 initial error 8.2 % 8.0 %
source 1 final error 6.8% 5.8 %
source 2 initial error 4.3 % 4.5 %
source 2 final error 5.7 % 5.0 %

TABLE III: Source Localization error vs. number of measurements used for
non-free-field domain.
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Fig. 4: Non-free-field domain with two sources using 248 measurements.

to the source, and without a good distribution of measurement
locations throughout the domain, the optimization algorithm
will not be able to properly localize the sources. The use
of the PDE resolves these ambiguities but, measurements are
still necessary at critical parts of the domain. Results in the
localization error are shown in Figure 4 with tabulated errors in
Table III. Compared to the free-field case, more measurements
were needed in order to obtain a good source estimate. This
makes sense given the complex pressure field caused by the
reflecting obstacles in the domain. The initialization procedure
was observed to be critical for the correct identification of the
sources. Even with a good location initialization on the sources,
incorrect phase initialization on the intensities βi could cause
the optimization algorithm to drift to undesirable local minima.

V. CONCLUSION

In this paper we presented a method for solving acoustic
source identification problems in the frequency domain given
a finite element model of the domain and a set of noisy pressure
measurements. We formulated the problem as a least squares
optimization problem that minimizes the discrepancy between
the observed pressure measurements and those predicted by
the governing PDE model. Through real experiments, we
were able to show that our method can localize multiple
sources in a complex domain with a sufficient number of
measurements. Moreover, we can identify more details of the
source field, such as relative phase between sources. While
simpler methods exist for free-field domains requiring fewer

measurements, the approach presented in this paper generalizes
to any domain with arbitrary shape and boundary conditions.
Furthermore, there is no need to compute response matrices or
transfer functions for every potential source location making
the approach very versatile.
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