
ANewOne-PointResidual-FeedbackOracleFor

Black-BoxLearning andControl

Yan Zhang* a, Yi Zhou* b, Kaiyi Ji c, Michael M. Zavlanos a

aMechanical Enginerring and Material Science, Duke University, Durham, NC 27708 USA

bElectrical and Computer Engineering, The University of Utah, Salt Lake City, UT 84112 USA

cElectrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 USA

Abstract

Zeroth-order optimization (ZO) algorithms have been recently used to solve black-box or simulation-based learning and control
problems, where the gradient of the objective function cannot be easily computed but can be approximated using the objective
function values. Many existing ZO algorithms adopt two-point feedback schemes due to their fast convergence rate compared
to one-point feedback schemes. However, two-point schemes require two evaluations of the objective function at each iteration,
which can be impractical in applications where the data are not all available a priori, e.g., in online optimization. In this
paper, we propose a novel one-point feedback scheme that queries the function value once at each iteration and estimates the
gradient using the residual between two consecutive points. When optimizing a deterministic Lipschitz function, we show that
the query complexity of ZO with the proposed one-point residual feedback matches that of ZO with the existing two-point
schemes. Moreover, the query complexity of the proposed algorithm can be improved when the objective function has Lipschitz
gradient. Then, for stochastic bandit optimization problems where only noisy objective function values are given, we show that
ZO with one-point residual feedback achieves the same convergence rate as that of two-point scheme with uncontrollable data
samples. We demonstrate the effectiveness of the proposed one-point residual feedback via extensive numerical experiments.
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1 Introduction

Zeroth-order optimization algorithms have been widely-
used to solve control and machine learning problems
where first or second order information (i.e., gradient
or Hessian information) is unavailable, e.g., controlling
complex systems whose dynamics can not be modeled
explicitly but can only be given by high-fidelity simula-
tors Ghadimi & Lan (2013), adversarial training Chen
et al. (2017), reinforcement learning Fazel et al. (2018);
Malik et al. (2018) and human-in-the-loop control Luo
et al. (2020). In these problems, the goal is to solve the
following generic optimization problem

min
x∈Rd

f(x), (P)
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where x ∈ Rd corresponds to the parameters and f de-
notes the total loss. Using zeroth-order information, i.e.,
function evaluations, first-order gradients can be esti-
mated to solve the problem (P).

Existing zeroth-order optimization (ZO) algorithms can
be divided into two categories, namely, ZO with one-
point feedback and ZO with two-point feedback. Flax-
man et al. (2005) was among the first to propose a ZO al-
gorithm with one-point feedback, that queries one func-
tion value at each iteration to estimate the gradient. The

corresponding one-point gradient estimator ∇̃f(x) takes
the form 2

(One-point feedback): ∇̃f(x) =
u

δ
f(x+ δu), (1)

2 In Flaxman et al. (2005), the estimator is ∇̃f(x) =
du
δ
f(x+ δu) where x ∈ Rd and u is uniformly sampled from

a unit sphere in Rd. In this paper, we follow Nesterov &
Spokoiny (2017) and sample u from the standard normal
distribution.
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Table 1
Iteration Complexity of Zeroth-order Methods with One-point, Two-point and Proposed Feedback Schemes

Complexity 3 Convex C0,0 Convex C1,1 Nonconvex C0,0 Nonconvex C1,1

One-point Gasnikov et al. (2017) d2ε−4 d2ε−3 – –

Two-point

Duchi et al. (2015) d log(d)ε−2 dε−2 – –

Shamir (2017) dε−2 – – –

Nesterov & Spokoiny (2017) d2ε−2 dε−1 d3ε−1
f ε−2 dε−1

Bach & Perchet (2016) – d2ε−3 (UN) – –

Residual One-point
Deterministic d2ε−2 d3ε−1.5 d4ε−1

f ε−2 d3ε−1.5

Stochastic d2ε−4 d2ε−3 d3ε−3
f ε−2 d4ε−3

where δ is an exploration parameter and u ∈ Rd is
sampled from the standard normal distribution element-
wise. In particular, Flaxman et al. (2005) showed that
the above one-point gradient estimator has a large esti-
mation variance and the resulting ZO algorithm achieves
a convergence rate of at most O(T−

1
4 ), where T is the

number of iterations, which is much slower than that of
gradient descent algorithms used to solve problem (P).
Assuming smoothness and relying on self-concordant
regularization, Dekel et al. (2015); Saha & Tewari (2011)
further improved this convergence speed. However, the
gap in the iteration complexity between ZO algorithms
with one-point feedback and gradient-based methods re-
mained. In order to reduce the large estimation variance
of the above one-point gradient estimator, Agarwal et al.
(2010); Nesterov & Spokoiny (2017); Shamir (2017) in-
troduced the following two-point gradient estimators

(Two-point feedback): ∇̃f(x) =
u

δ

(
f(x+ δu)− f(x)

)
,

or
u

2δ

(
f(x+ δu)− f(x− δu)

)
, (2)

that have lower estimation variance and showed that ZO
with these two-point feedbacks achieves a convergence
rate of O( 1√

T
) (or O( 1

T ) when the problem is smooth),

which is order-wise much faster than the convergence
rate achieved by ZO algorithms with one-point feedback.
Therefore, as also pointed out in Larson et al. (2019), a
fundamental question we seek to answer in this paper is:

• (Q1): Does there exist a one-point feedback for which
zeroth-order optimization can achieve the same query
complexity as that of two-point feedback methods?

3 In convex setting, the accuracy is meaured by f(x) −
f(x∗) ≤ ε, where x∗ = arg minx∈Rd f(x), while in the

non-convex setting, it is measured by ‖∇f(x)‖2 ≤ ε when
the objective function is smooth. When the objective func-
tion is non-smooth, we enforce two optimality measures,
|f(x) − fδ(x)| ≤ εf and ‖∇fδ(x)‖2 ≤ ε together, where
function fδ(x) is a smoothed function defined as fδ(x) :=
Eu∼N (0,1)[f(x + δu)]. (UN) means the oracle considers un-

The literature discussed above focuses on determinis-
tic optimization problems (P). Nevertheless, in practice,
many problems involve randomness in the environment
and parameters, giving rise to the following stochastic
optimization problem

min
x∈Rd

f(x) = Eξ[F (x, ξ)], (Q)

where only a noisy function evaluation F (x, ξ) with a
random data sample ξ is available. ZO algorithms have
also been developed to solve the above problem (Q), e.g.,
Akhavan et al. (2020); Bach & Perchet (2016); Duchi
et al. (2015); Gasnikov et al. (2017); Ghadimi & Lan
(2013); Hu et al. (2016). In particular, Ghadimi & Lan
(2013) consider the following widely-used stochastic two-
point feedback

∇̃f(x) =
u

δ

(
F (x+ δu, ξ)− F (x, ξ)

)
(3)

and show that ZO with this stochastic two-point feed-
back has the same convergence rate as ZO with the two-
point feedback scheme in (2) for deterministic problems
(P). Similarly, Duchi et al. (2015) further analyzed the
oracle in (3) in a mirror descent framework and showed
a similar convergence speed. Stochastic one-point and
two-point feedback schemes with improved convergence
rates have also been studied in Gasnikov et al. (2017).
However, these stochastic two-point feedback schemes
assume that the data sample ξ is controllable, i.e., one
can fix the data sample ξ and evaluate the function value
at two distinct points x and x + δu. This assumption
is unrealistic in many applications. For example, in re-
inforcement learning, controlling the sample ξ requires
applying the same sequence of noises to the dynamical
system and reward function. Hence, two-point feedback
schemes with fixed data samples can be impractical. To
address this challenge, Akhavan et al. (2020); Bach &

controllable data samples. The notations C0,0 and C1,1 rep-
resent the function classes that are either Lipschitz, or have
Lipschitz gradient. The detailed definition of these notations
can be found in Definition 1.
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Perchet (2016); Hu et al. (2016) proposed a more prac-
tical noisy two-point feedback method that replaces the
fixed sample ξ in (3) with two independent samples ξ, ξ′.
Its convergence rate was shown to match that of the

stochastic one-point feedback ∇̃f(x) = u
δF (x + δu, ξ).

Still though, this two-point feedback method with inde-
pendent data samples produces gradient estimates with
lower variance compared to the conventional one-point
feedback method. Therefore, an additional fundamental
question we seek to answer in this paper is:

• (Q2): Can we develop a stochastic one-point feedback
that achieves the same practical performance as that
of the noisy two-point feedback?

Contributions: In this paper, we provide positive an-
swers to these open questions by introducing a new one-
point residual feedback scheme and theoretically analyz-
ing the convergence of zeroth-order optimization using
this feedback scheme. Specifically, our contributions are
as follows. We propose a new one-point feedback scheme
which requires a single function evaluation at each iter-
ation. This feedback scheme estimates the gradient us-
ing the residual between two consecutive feedback points
and we refer to it as residual feedback. We show that our
residual feedback induces a smaller estimation variance
than the one-point feedback (1) considered in Flaxman
et al. (2005); Gasnikov et al. (2017). Specifically, in de-
terministic optimization where the objective function is
Lipschitz-continuous, we show that ZO with our resid-
ual feedback achieves the same convergence rate as ex-
isting ZO with two-point feedback schemes. To the best
of our knowledge, this is the first one-point feedback
scheme with provably comparable performance to two-
point feedback schemes in ZO. Moreover, when the ob-
jective function has an additional smoothness structure,
we further establish an improved convergence rate of ZO
with residual feedback. In the stochastic case where only
noisy function values are available, we show that the
convergence rate of ZO with residual feedback matches
the state-of-the-art result of ZO with two-point feedback
under uncontrollable data samples. Hence, our residual
feedback bridges the theoretical gap between ZO with
one-point feedback and ZO with two-point feedback.
A summary of the complexity results for the proposed
residual-feedback scheme can be found in Table 1.

Applications in Learning and Control: The pro-
posed one-point residual-feedback oracle has important
applications in a variety of learning and control problems
where the gradients are unavailable or difficult to com-
pute. For example, it can be used to reduce the number
of black-box function evaluations, compared to the con-
ventional one-point oracle, in optimal charging problems
for electrical vechicles Li et al. (2021), extreme seeking
problems for ABS control for automotive brakes Nešić
(2009); Poveda & Li (2021). In addition, residual feed-
back can reduce the computational cost of ZO methods
for distributed reinforcement learning problems, while

maintaining a similar convergence rate as that achieved
by two-point methods Zhang & Zavlanos (2020). This
is because residual feedback, being a one-point method,
requires only a single policy evaluation (generally an ex-
pensive calculation) at each iteration to estimate the
policy gradient. Moreover, residual feedback can signifi-
cantly improve the convergence speed of ZO algorithms
for non-stationary reinforcement learning problems, as
shown in Zhang et al. (2020). Note that two-point meth-
ods can not be used for non-stationary reinforcement
learning problems because they require two different pol-
icy evaluations in the same environment, which is not
possible when the environment is non-stationary and
changes after each policy evaluation. Compared to these
works, here we focus on the iteration complexity of ZO
methods with one-point residual feedback for static op-
timization problems, under different assumptions on the
objective functions and their evaluation. This analy-
sis, that is summarized in Table 1, lays the theoretical
foundations of residual feedback and justifies its use for
the more challenging learning and control problems dis-
cussed above.

2 Preliminaries

In this section, we present definitions and preliminary
results needed throughout our analysis. Following Bach
& Perchet (2016); Nesterov & Spokoiny (2017), we in-
troduce the following classes of Lipschitz and smooth
functions.

Definition 1 (Lipschitz functions) The class of
Lipschtiz-continuous functions C0,0 satisfy: for any
f ∈ C0,0, |f(x) − f(y)| ≤ L0‖x − y‖, ∀x, y ∈ Rd,
for some Lipschitz parameter L0 > 0. The class of
smooth functions C1,1 satisfy: for any f ∈ C1,1,
‖∇f(x) − ∇f(y)‖ ≤ L1‖x − y‖, ∀x, y ∈ Rd, for some
Lipschitz parameter L1 > 0.

In ZO, the objective is to estimate the first-order gradi-
ent of a function using zeroth-order oracles. Necessarily,
we need to perturb the function around the current point
along all the directions uniformly in order to estimate
the gradient. This motivates us to consider the Gaussian-
smoothed version of the function f as introduced in Nes-
terov & Spokoiny (2017), fδ(x) := Eu∼N (0,1)[f(x+δu)],
where the coordinates of the vector u are i.i.d standard
Gaussian random variables. The following bounds on the
approximation error of the function fδ(x) have been de-
veloped in Nesterov & Spokoiny (2017).

Lemma 2 (Gaussian approximation) Consider a
function f and its Gaussian-smoothed version fδ. It
holds that

|fδ(x)− f(x)| ≤
{
δL0

√
d, if f ∈ C0,0,

δ2L1d, if f ∈ C1,1,

and ‖∇fδ(x)−∇f(x)‖ ≤ δL1(d+ 3)3/2, if f ∈ C1,1.
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Moreover, the smoothed function fδ(x) has the follow-
ing nice geometrical property as proved in Nesterov &
Spokoiny (2017).

Lemma 3 If function f ∈ C0,0 is L0-Lipschitz, then
its Gaussian-smoothed version fδ belongs to C1,1 with
Lipschitz constant L1 =

√
dδ−1L0.

We also introduce the following notions of convexity.

Definition 4 (Convexity) A continuously differen-
tiable function f : Rd → R is called convex if for all
x, y ∈ Rd, f(x) ≥ f(y) + 〈x− y,∇f(y)〉 .

3 Deterministic ZO with Residual Feedback

In this section, we consider the problem (P), where the
objective function evaluation is fully deterministic. To
solve this problem, we propose a zeroth-order estimate
of the gradient based on the following one-point residual
feedback scheme

g̃(xt) :=
ut
δ

(
f(xt + δut)− f(xt−1 + δut−1)

)
, 4 (4)

where ut−1 and ut are independent random vectors sam-
pled from the standard multivariate Gaussian distribu-
tion. To elaborate, the gradient estimate in (4) evaluates
the function value at one perturbed point xt + δut at
each iteration t and the other function value evaluation
f(xt−1 + δut−1) is inherited from the previous iteration.
Therefore, it is a one-point feedback scheme based on the
residual between two consecutive feedback points, and
we name it one-point residual feedback. Next, we show
that this estimator is an unbiased gradient estimate of
the smoothed function fδ(x) at xt.

Lemma 5 We have E
[
g̃(xt)

]
= ∇fδ(xt) for all xt ∈ Rd.

PROOF. The proof is straightforward because ut is
independent from ut−1 and has zero mean. 2

Since g̃(xt) is an unbiased estimate of ∇fδ(xt), we can
use it in Stochastic Gradient Descent (SGD) as follows

xt+1 = xt − ηg̃(xt), (5)

where η is the stepsize. To analyze the convergence of
the above ZO algorithm with residual feedback, we need
to bound the variance of the gradient estimate under

4 At time t = 0, we can query the objective function f at
x0 + δu0 and update x0 using the conventional one-point
oracle (1). Then, starting from time t = 1, we can update
using estimator (4).

proper choices of the exploration parameter δ in (4) and
the stepsize η. In the following result, we present the
bounds on the second moment of the gradient estimate
E[‖g̃(xt)‖2], which will be used in our analysis later.

Lemma 6 Consider a function f ∈ C0,0 with Lipschitz
constant L0. Then, under the SGD update rule in (5),
the second moment of the residual feedback satisfies

E[‖g̃(xt)‖2] ≤ 2dL2
0η

2

δ2
E[‖g̃(xt−1)‖2] + 8L2

0(d+ 4)2.

Furthermore, if f(x) also belongs to C1,1 with constant
L1, then the second moment of the residual feedback sat-
isfies

E[‖g̃(xt)‖2] ≤ 2dL2
0η

2

δ2
E[‖g̃(xt−1)‖2]

+ 8(d+ 4)2‖∇f(xt−1)‖2 + 4L2
1(d+ 6)3δ2. (6)

The proof of above Lemma 6 can be found in Ap-
pendix A. Lemma 6 shows that the second moment of
the residual feedback E[‖g̃(xt)‖2] can be bounded by
a perturbed contraction under the SGD update rule.
This perturbation term is crucial to establish the iter-
ation complexity of ZO with our residual feedback. In
particular, with the traditional one-point feedback, the
perturbation term is in the order of O(δ−2) and signifi-
cantly degrades the convergence speed Hu et al. (2016).
In comparison, our residual feedback induces a much
smaller perturbation term. Specifically, when f ∈ C0,0,
the perturbation is the order of O(L2

0d
2) that is inde-

pendent of δ, and when f ∈ C1,1, the perturbation is
in the order of O(d2‖∇f(xt−1)‖2 + L2

1d
3δ2). Therefore,

ZO with our residual feedback can achieve a better it-
eration complexity than that of ZO with the traditional
one-point feedback.

3.1 Convergence Analysis

We first consider the case where the objective func-
tion f is nonconvex. When f is differentiable, we say
a solution x is ε-accurate if E[‖∇f(x)‖2] ≤ ε. How-
ever, when f is nonsmooth, the gradient of the original
objective function ∇f(x) does not exist. On the other
hand, the smoothed objective function fδ(x) is differen-
tiable. Therefore, we find an ε-accurate solution of the
smoothed problem such that E[‖∇fδ(x)‖2] ≤ ε. In the
meantime, we require fδ to be εf -close to the original ob-
jective function f , which requires δ ≤ εf

L0

√
d

according to

Lemma 2. Similar optimality conditions have also been
considered in Nesterov & Spokoiny (2017). Under this
setup, the convergence rate of ZO with residual feedback
is presented below. For simplicity, all the complexity re-
sults in this paper are presented in O notations. The
proofs and the explicit form of the constant terms can
be found in the supplementary material.
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Theorem 7 Assume that f ∈ C0,0 with Lipschitz con-
stant L0 and that f is also bounded below by f∗. More-
over, assume that SGD in (5) with residual feedback is
run for T > 1/εf iterations and that x̃ is selected from

the T iterates uniformly at random. Let also η =
√
εf

2dL2
0

√
T

and δ =
εf

L0d
1
2

. Then, we have that E
[
‖∇fδ(x̃)‖2

]
=

O(d2ε−0.5f T−0.5).

The proof can be found in Appendix B. Based on
the above convergence rate result, the required iter-
ation complexity to achieve a point x that satisfies
|f(x) − fδ(x)| ≤ εf as well as E[‖∇f(x̃)‖2] ≤ ε is of

the order O( d4

εf ε2
). This complexity result is close to the

complexity result O( d3

εf ε2
) of ZO with two-point feed-

back in Nesterov & Spokoiny (2017). When f(x) ∈ C1,1

is a smooth function, we obtain the following conver-
gence rate result for ZO with residual feedback.

Theorem 8 Assume that f(x) ∈ C0,0 with Lipschitz
constant L0 and that f(x) ∈ C1,1 with Lipschitz constant
L1. Moreover, assume that SGD in (5) with residual feed-
back is run for T iterations and that x̃ is selected from the
T iterates uniformly at random. Let also η = 1

L̃(d+4)2T
1
3

,

and δ = 1√
dT

1
3

, where L̃ = max(2L0, 32L1). Then, we

have that E
[
‖∇f(x̃)‖2

]
= O(d2T−

2
3 ).

The proof can be found in Appendix C. In particular,
to achieve a point x that satisfies E

[
‖∇f(x̃)‖2

]
≤ ε, the

required iteration complexity is of the order O(d3ε−
3
2 ).

To the best of our knowledge, the best complexity result
for ZO with two-point feedback is of the order O(dε−1),
which is established in Nesterov & Spokoiny (2017).
Next, we consider the case where the objective function
f is convex. In this case, the optimality of a solution x
is measured via the loss gap f(x) − f(x∗), where x∗ is
the global optimum of f .

Theorem 9 Assume that f(x) ∈ C0,0 is convex with
Lipschitz constant L0. Moreover, assume that SGD in
(5) with residual feedback is run for T iterations and

define the running average x̄ = 1
T

∑T−1
t=0 xt. Let also η =

1
2dL0

√
T

and δ = 1√
T

. Then, we have that f(x̄)−f(x∗) =

O(dT−0.5).

Moreover, assume that additionally f(x) ∈ C1,1 with
Lipschitz constant L1, and let η = 1

2L̃(d+4)2T
1
3

and δ =
√
d

T
1
3

, where L̃ = max{L0, 16L1}. Then, we have that

f(x̄)− f(x∗) = O(d2T−
2
3 ).

The proof can be found in Appendix D. To elaborate, to
achieve a solution x that satisfies f(x̄)− f(x∗) ≤ ε, the
required iteration complexity is of the order O(d2ε−2)

when f ∈ C0,0. Such a complexity result significantly
improves the complexity O(d2ε−4) of ZO with the tradi-
tional one-point feedback and is slightly worse than the
best complexityO(dε−2) of ZO with two-point feedback.
On the other hand, when f(x) ∈ C1,1, the required it-
eration complexity of ZO with residual feedback further
reduces toO(d3ε−1.5), which is better than the complex-
ity O(dε−3) of ZO with the traditional one-point feed-
back whenever ε < d−4/3.

4 Online ZO with Stochastic Residual Feedback

In this section, we study the Problem (Q) where the ob-
jective function takes the form f(x) := E[F (x, ξ)] and
only noisy samples of the function valueF (x, ξ) are avail-
able. Specifically, we propose the following stochastic
residual feedback

g̃(xt) :=
ut
δ

(
F (xt + δut, ξt)− F (xt−1 + δut−1, ξt−1)

)
,

(7)
where ξt−1 and ξt are independent random samples that
are sampled in iterations t−1 and t, respectively. We note
that our stochastic residual feedback is more practical
than most existing two-point feedback schemes, which
require the data samples to be controllable, i.e., one can
query the function value at two different variables us-
ing the same data sample. This assumption is unrealistic
in applications where the environment is dynamic. For
example, in reinforcement learning Malik et al. (2018),
these data samples can correspond to random initial
states, noises added to the dynamical system, and re-
ward functions. Therefore, controlling the data samples
requires to hard reset the system to the exact same ini-
tial state and apply the same sequence of noises, which is
impossible when the data is collected from a real-world
system. Our stochastic residual feedback scheme in (7)
does not suffer from the same issue since it does not re-
strict the data sampling procedure. Instead, it simply
takes the residual between two consecutive stochastic
feedback points. In particular, it is straightforward to
show that (7) is an unbiased gradient estimate of the ob-
jective function fδ(x). Next, we present some assump-
tions that are used in our analysis later.

Assumption 10 (Bounded Variance) We assume that
for any x ∈ Rd there exists σ > 0 such that

E
[(
F (x, ξ)− f(x)

)2] ≤ σ2.

Assumption 10 implies that E
[(
F (x, ξ1)−F (x, ξ2)

)2] ≤
4σ2. Furthermore, we make the following smoothness
assumption in the stochastic setting.

Assumption 11 Let function F (x, ξ) ∈ C0,0 with Lips-
chitz constant L0(ξ). We assume that L0(ξ) ≤ L0 for all
ξ ∈ Ξ. In addition, let the function F (x, ξ) ∈ C1,1 with
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Lipschitz constant L1(ξ). We assume that L1(ξ) ≤ L1

for all ξ ∈ Ξ.

The following lemma provides an upper bound of
E[‖g̃(xt)‖2] in this stochastic setting.

Lemma 12 Let Assumptions 10 and 11 hold and assume
F (x, ξ) ∈ C0,0 with Lipschitz constant L0(ξ). We have
that

E[‖g̃(xt)‖2] ≤ 4L2
0dη

2

δ2
E[‖g̃(xt−1)‖2]+16L2

0(d+4)2+
8σ2d

δ2
.

The proof can be found in Appendix E. If we assume
that F (x, ξ) ∈ C1,1, the upper bound on the above sec-
ond moment can be further improved (see supplemen-
tary material for the details). However, this improve-
ment does not yield a better iteration complexity due
to the uncontrollable samples ξt and ξt−1. More specif-
ically, the uncontrollable samples lead to an additional

term 8σ2d
δ2 in the above second moment bound. Accord-

ing to the analysis in Hu et al. (2016), such a term can
significantly degrade the iteration complexity.

4.1 Convergence Analysis

Next, we analyze the iteration complexity of ZO with
stochastic residual feedback for both non-convex and
convex problems.

Theorem 13 Let Assumptions 10 and 11 hold and
assume also that F (x, ξ) ∈ C0,0. Moreover, as-
sume that SGD in (5) with residual feedback is run
for T > 1/(dεf ) iterations and that x̃ is selected
from the T iterates uniformly at random. Let also

η =
ε1.5f

2
√
2L2

0d
1.5
√
T

and δ =
εf

L0

√
d

. Then, we have that

E
[
‖∇fδ(x̃)‖2

]
= O(d1.5ε−1.5f T−0.5).

Furthermore, assume that additionally F (x, ξ) ∈ C1,1,
and that SGD in (5) with residual feedback is run for
T > 2 iterations. Let also η = 1

2L0d
4
3 T

2
3

and δ = 1

d
5
6 T

1
6

.

Then, the output x̃ that is sampled uniformly from the T
iterates satisfies E

[
‖∇f(x̃)‖2

]
= O(d

4
3T−

1
3 ).

The proof can be found in Appendix F. Based on the
above results, when F (x, ξ) is non-smooth, to achieve
the ε−stationary point E

[
‖∇fδ(x̃)‖2

]
≤ ε and |f(x) −

fδ(x)| ≤ εf , O( d3

ε3
f
ε2

) iterations are needed. In addition,

if the function F (x, ξ) also satisfies F (x, ξ) ∈ C1,1, then

O(d
4

ε3 ) iterations are needed to find the ε−stationary
point of the original function f(x). Next, we provide the
iteration complexity results when the Problem (Q) is
convex.

Theorem 14 Let Assumptions 10 and 11 hold and as-
sume that the function F (x, ξ) ∈ C0,0 is also convex.
Moreover, assume that SGD in (5) with residual feedback
is run for T iterations and define the running average

x̄ = 1
T

∑T−1
t=0 xt. Let also η = 1

2
√
2L0

√
dT

3
4

and δ = 1

T
1
4

.

Then, we have that f(x̄) − f(x∗) = O(
√
dT−

1
4 ). More-

over, assume that additionally F (x, ξ) ∈ C1,1, and let
η = 1

2
√
2L0d

2
3 T

2
3

and δ = 1

d
1
6 T

1
6

. Then, we have that

f(x̄)− f(x∗) = O(d
2
3T−

1
3 ).

The proof can be found in Appendix G. According to

Theorem 14, O(d
2

ε4 ) iterations are needed to achieve
f(x̄) − f(x∗) ≤ ε with a nonsmooth objective func-
tion. On the other hand, if f(x) ∈ C1,1, the iteration

complexity is improved to O(d
2

ε3 ).

5 ZO with Mini-batch Stochastic Residual
Feedback

When applying zeroth-order oracles to practical appli-
cations, instead of directly using the oracle (7), a mini-
batch scheme can be implemented to further reduce the
variance of the gradient estimate, as discussed in Fazel
et al. (2018). To be more specific, consider the gradient
estimate with batch size b:

g̃b(xt) =
ut
bδ

(
F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ

′
1:b)
)
,

where F (xt + δut, ξ1:b) =
∑b
j=1 F (xt + δut, ξj). It is

straightforward to see that the variance of g̃b(xt) is b2

times smaller than that of the oracle (7). This is partic-
ularly useful when the problem is sensitive to bad search
directions. For example, in the policy optimization prob-
lem Fazel et al. (2018), when the gradient has large vari-
ance, it can drive the policy parameter to divergence and
result in infinite cost. A Mini-batch scheme can reduce
the variance of the policy gradient (search direction) es-
timate and therefore is of particular interest in this sce-
nario. In this paper, we show that using the oracle (7) in
a mini-batch scheme can achieve the same query com-
plexity as standard SGD. Its analysis is provided in Ap-
pendix H.

6 Numerical Experiments

In this section, we demonstrate the effectiveness of the
residual one-point feedback scheme for both determin-
istic and stochastic problems. In the deterministic case,
we compare the performance of the proposed oracle with
the original one-point feedback and two-point feedback
schemes, for the quadratic programming (QP) exam-
ple considered in Shamir (2013). In the stochastic case,
we employ the stochastic variants of above oracles to
optimize the policy parameters in a Linear Quadratic
Regulation (LQR) problem considered in Fazel et al.
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Fig. 1. The convergence rate of applying the proposed resid-
ual one-point feedback (4) (blue), the two-point oracle (2) in
Nesterov & Spokoiny (2017) (orange) and the one-point or-
acle (1) in Flaxman et al. (2005) (green) to two problems. In
(a), the convergence of f(xt)− f(x∗) in a deterministic QP
problem is presented. In (b), the convergence of the costs of
policies in the stochastic LQR problem is presented.

(2018); Malik et al. (2018). It is shown that the pro-
posed residual one-point feedback significantly outper-
forms the traditional one-point feedback and its con-
vergence rate matches that of the two-point oracles in
both deterministic and stochastic cases. Furthermore,
we apply our residual-feedback zeroth-order gradient es-
timate to solve a large-scale stochastic multi-stage de-
cision making problem to demonstrate its performance
in the high dimensional problems. All experiments are
conducted using Matlab R2018b on a 2018 Macbook
Pro with a 2.3 GHz Quad-Core Intel Core i5 and 8GB
2133MHz memory.

In all the experiments, we first manually select the ex-
ploration parameter δ. Then, we tune the stepsize η so
that all algorithms converge at their fastest speed.

6.1 A Deterministic Scenario: QP Problem

As in Shamir (2013), consider the QP example min 1
2 (x−

c)TM(x − c), where x, c ∈ R30 and M ∈ R30×30 is a
positive semi-definite matrix. This constitutes a convex

and smooth problem. The vector c is randomly gener-
ated from a uniform distribution in [0, 2]. The matrix
M = PPT , where each entry in P ∈ R30×29 is sampled
from a uniform distribution in [0, 1]. The initial point is
the origin. For every algorithm, we manually optimize
the selection of the exploration parameter δ and stepsize
η and run it 100 times. Specifically, we select δ as δ = 0.1,
and the stepsizes for the proposed residual feedback es-
timator, the two-point estimator and the conventional
one-point estimator are 0.05, 0.1, 0.01, respectively. The
convergence of the function value f(x) − f(x∗) is pre-
sented in Figure 1(a). We observe that the proposed ora-
cle converges as fast as the two-point oracle (2) when the
iterates are far from the optimizer but achieve less accu-
racy in the end. Both methods find the optimal function
value much faster than the one-point feedback studied
in Flaxman et al. (2005); Gasnikov et al. (2017). These
observations validate our theoretical results in Section 3.

6.2 A Stochastic Scenario: Policy Optimization

We use the proposed residual feedback to optimize the
policy parameters in a LQR problem, as in Fazel et al.
(2018); Malik et al. (2018). Specifically, consider a sys-
tem whose state xk ∈ Rnx at time k is subject to the
dynamical equation xk+1 = Axk + Buk + wk, where
uk ∈ Rnu is the control input at time k, A ∈ Rnx×nx

and B ∈ Rnx×nu are dynamical matrices that are un-
known, and wk is the noise on the state transition. More-
over, consider a state feedback policy uk = Kxk, where
K ∈ Rnu×nx is the policy parameter. Policy optimiza-
tion essentially aims to find the optimal policy parame-
ter K so that the discounted accumulated cost function
V (K) := E

[∑∞
t=0 γ

t(xTkQxk + uTkRuk)
]

is minimized,
where γ ≤ 1 is the discount factor.

In our simulation, we select nx = 6, nu = 6 and γ = 0.5.
Therefore, the problem has dimension d = 36. When im-
plementing the policy uk = Ktxk, due to the noise wk,
evaluation of the cost of the policy Kt is noisy. We ap-
ply the one-point feedback (1) with noise Gasnikov et al.
(2017), two-point feedback with uncontrolled noise Bach
& Perchet (2016); Hu et al. (2016) and the residual one-
point feedback (7) to solve the above policy optimiza-
tion problem. To evaluate the cost V (Kt) given the pol-
icy parameter Kt at iteration t, we run one episode with
a finite horizon length H = 50. The dynamical matri-
ces A and B are randomly generated and the noise wk
is sampled from a Gaussian distribution N (0, 0.12). We
select the exploration parameter δ as δ = 0.1, and the
stepsizes for the proposed residual feedback estimator,
the two-point estimator and the conventional one-point
estimator are 2 × 10−3, 2.5 × 10−3, 1.5 × 10−4, respec-
tively. We run each algorithm 10 times. At each trial, all
the algorithms start from the same initial guess of the
policy parameter K0, which is generated by perturbing
the optimal policy parameterK∗ with a random matrix,
as in Malik et al. (2018). Each entry in this random per-
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turbation matrix is sampled from a uniform distribution
in [0, 0.2]. The performance of all the algorithms over
10 trials is measured in terms of |V (Kt) − V (K∗)| and
is presented in Figure 1(b). We observe that the resid-
ual one-point feedback (7) converges much faster than
the one-point oracle in Gasnikov et al. (2017) and has
comparable query complexity to the two-point feedback
under uncontrolled noises considered in Bach & Perchet
(2016); Hu et al. (2016). This corroborates our theoret-
ical analysis in Section 4.

6.3 Zeroth-Order Policy Optimization for a Large-Scale
Multi-Stage Decision Making Problem

In this section, we consider a large-scale multi-stage
resource allocation problem. Specifically, we consider
16 agents that are located on a 4 × 4 grid. At agent i,
resources are stored in the amount of mi(k) and there
is also a demand for resources in the amount of di(k)
at instant k. In the meantime, agent i also decides
what fraction of resources aij(k) ∈ [0, 1] it sends to its
neighbors j ∈ Ni on the grid. The local amount of re-
sources and demands at agent i evolve as mi(k + 1) =
mi(k)−

∑
j∈Ni

aij(k)mi(k)+
∑
j∈Ni

aji(k)mj(k)−di(k)

and di(k) = Ai sin(ωik + φi) + wi,k, where the ampli-
tude Ai is sampled uniformly from [1, 2], ωi = 2π, φi
is uniformly sampled from [0, π], and wi,k is the noise
in the demand sampled from the normal distribution
N (0, A2

i /100). At time k, agent i receives a local re-
ward ri(k), such that ri(k) = 0 when mi(k) ≥ 0 and
ri(k) = −mi(k)2 when mi(k) < 0. Let agent i makes its
decisions according to a parameterized policy function
πi,θi(oi) : Oi → [0, 1]|Ni|, where θi is the parameter of
the policy function πi, oi ∈ Oi denotes agent i’s ob-
servation, and |Ni| represents the number of agent i’s
neighbors on the grid.

Our goal is to train a policy that can be executed in
a fully distributed way based on agents’ local informa-
tion. Specifically, during the execution of policy func-
tions {πi,θi(oi)}, we let each agent only observe its lo-
cal amount of resource mi(k) and demand and di(k),
i.e., oi(k) = [mi(k), di(k)]T . In addition, the policy func-
tion πi,θi(oi) is parameterized as the following: aij =

exp(zij)/
∑
j exp(zij), where zij =

∑9
p=1 ψp(oi)θij(p)

and θi = [. . . , θij , . . . ]
T . Specifically, the feature func-

tion ψp(oi) is selected as ψp(oi) = ‖oi−cp‖2, where cp is
the parameter of the p-th feature function. Specifically,
cp are selected as vectors lying in the two-dimensional
grid (−0.5, 0, 0.5)2. The goal for the agents is to find an
optimal policy π∗ = {πi,θi(oi)} so that the global accu-
mulated reward

J(θ) =

16∑
i=1

K∑
k=0

γkri(k) (8)

is maximized, where θ = [. . . , θi, . . . ] is the global pol-
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Fig. 2. The convergence rate of applying the proposed resid-
ual one-point feedback (4) (blue), the two-point oracle (2)
in Nesterov & Spokoiny (2017) (orange) and the one-point
oracle (1) in Flaxman et al. (2005) (green) to the large-s-
cale stochastic multi-stage resource allocation problem and
the multi-robot cooperative navigation problem. The verti-
cal axis represents the total rewards and the horizontal axis
represents the number of episodes the agents take to eval-
uate their policy parameter iterates during the policy opti-
mization procedure.

icy parameter, K is the horizon of the problem, and γ
is the discount factor. Effectively, the agents need to
make decisions on 64 actions, and each action is decided
by 9 parameters. Therefore, the problem dimension is
d = 576. To implement zeroth-order policy gradient es-
timators (1) and (7) to find the optimal policy, at iter-
ation t, we let all agents implement the policy with pa-
rameter θt+δut, collect rewards {ri(k)} at time instants
k = 0, 1, . . . ,K and compute the noisy policy value ac-
cording to (8). Then, the zeroth-order policy gradient
is estimated using (1) or (7). On the contrary, when
the two-point zeroth-order policy gradient estimator (2)
is used, at each iteration k, all agents need to evalu-
ate two policies θt ± δut to update the policy param-
eter once. In Figure 2(a), we present the performance
of using zeroth-order policy gradients (1), (2) and (7)
to solve this large-scale multi-stage resource allocation
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problem, where the discount factor is set as γ = 0.75
and the length of horizon K = 30. We select the ex-
ploration parameter δ as δ = 0.1, and the stepsizes for
the proposed residual feedback estimator, the two-point
estimator and the conventional one-point estimator are
1×10−4, 1×10−4, 5×10−5, respectively. Each algorithm
is run for 10 trials. We observe that policy optimiza-
tion with the proposed residual-feedback gradient esti-
mate (7) improves the optimal policy parameters with
the same learning rate as the two-point zeroth-order gra-
dient estimator (2), where the learning rate is measured
by the number of episodes the agents take to evaluate
the policy parameter iterates. In the meantime, both es-
timators perform much better than the one-point policy
gradient estimate (1) considered in Fazel et al. (2018);
Malik et al. (2018).

6.4 Zeroth-Order Policy Optimization for a Multi-
Robot Cooperative Navigation Problem

In this section, we demonstrate the effectiveness of the
proposed one-point residual-feedback gradient estimator
using the benchmark multi-agent particle environment
Lowe et al. (2017). Specifically, we consider the two-
agent two-landmark cooperative nagivation task, where
the agents navigate to the landmarks in the environment
without colliding into each other. At each time step,
agent i observes a vector oi ∈ R12 consisting of all agents’
states, i.e., their positions and velocities, and the two
landmarks’ positions. Then, agent i selects a 5 dimen-
sional action vector based on its observation oi, to drive
itself around the world . The dynamics of the agents’
states are governed by the physical engine used in the
particle environment. At each time, the team of agents
receive a team reward r(k) = −

∑
l=1,2 mini=1,2 ‖posi−

posl‖, where l denotes the landmark index, posi and posl
represent the position vectors of agent i and landmark
l. In addition, if the agents collide at time step k, the
team receives −1 as a penalty. In each episode, there are
25 time steps.

We let each agent learn a policy function πi,θi(oi∗) that
is designed as a ReLU neural network with one hidden
layer, where θi denotes the weights. The hidden layer
consists of 32 neurons. Therefore, each neural network
policy function has (12+1)×32+(32+1)×5 = 581 pa-
rameters to learn. The dimension of the problem is d =
1162. Since a ReLU activation function is used, the pol-
icy optimization problem is non-smooth. We implement
the proposed residual-feedback policy gradient estima-
tor, as well as the conventional one-point estimator (1)
and the two-point estimator (2), for 5 trials. Specifically,
we select the exploration parameter δ as δ = 0.1, and
the stepsizes for the proposed residual feedback estima-
tor, the two-point estimator and the conventional one-
point estimator are 5× 10−6, 1× 10−5, 1× 10−6, respec-
tively. The learning rates for these algorithms are man-
ually tuned to achieve their best performance respec-

tively. The results are presented in Figure 2(b). In this
non-smooth setting, we observe that policy optimiza-
tion with the proposed residual-feedback gradient still
has comparable performance to that of the two-point
policy gradient estimator (2) and both estimators per-
form much better than the one-point policy gradient es-
timate (1), similar to the smooth case in Section 6.3.

7 Conclusion

In this paper, we proposed a residual one-point feedback
oracle for zeroth-order optimization, which estimates the
gradient of the objective function using a single query of
the function value at each iteration. When the function
evaluation is noiseless, we showed that ZO using the pro-
posed oracle can achieve the same iteration complexity
as ZO using two-point oracles when the function is non-
smooth. When the function is smooth, this complexity
of ZO can be further improved. This is the first time
that a one-point zeroth-order oracle is shown to match
the performance of two-point oracles in ZO. In addition,
we considered a more realistic scenario where the func-
tion evaluation is corrupted by noise. We showed that
the convergence rate of ZO using the proposed oracle
matches the best known results using one-point feedback
or two-point feedback with uncontrollable data samples.
We provided numerical experiments that showed that
the proposed oracle outperforms the one-point oracle
and is as effective as two-point feedback methods.
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Appendix

A Proof of Lemma 6

First, we show the bound when f(x) ∈ C0,0. Recalling
the expression of g̃(xt) in (4), we have that

E[‖g̃(xt)‖2] = E[
1

δ2
(
f(xt + δut)− f(xt−1 + δut−1)

)2‖ut‖2]

≤ 2

δ2
E[
(
f(xt + δut)− f(xt−1 + δut)

)2‖ut‖2]

+
2

δ2
E[
(
f(xt−1 + δut)− f(xt−1 + δut−1)

)2‖ut‖2].

Since function f ∈ C0,0 with Lipschitz constant L0, we
obtain that

E[‖g̃(xt)‖2] ≤2L2
0

δ2
E[‖xt − xt−1‖2‖ut‖2]

+ 2L2
0E[‖ut − ut−1‖2‖ut‖2]. (A.1)

Since ut is independently sampled from xt − xt−1, we
have thatE[‖xt−xt−1‖2‖ut‖2] = E[‖xt−xt−1‖2]E[‖ut‖2].
Since ut is subject to standard multivariate nor-
mal distribution, E[‖ut‖2] = d. Furthermore, using
Lemma 1 in Nesterov & Spokoiny (2017), we get that
E[‖ut − ut−1‖2‖ut‖2] ≤ 2E[(‖ut‖2 + ‖ut−1‖2)‖ut‖2] =
2E[(‖ut‖4] + 2E[‖ut−1‖2‖ut‖2] ≤ 4(d + 4)2. Plugging
these bounds into inequality (A.1), we have that

E[‖g̃(xt)‖2] ≤ 2dL2
0

δ2
E[‖xt − xt−1‖2] + 8L2

0(d+ 4)2.

Since xt = xt−1 − ηg̃(xt−1), we get that

E[‖g̃(xt)‖2] ≤ 2dL2
0η

2

δ2
E[‖g̃(xt−1)‖2] + 8L2

0(d+ 4)2.

Next, we show the bound when we have the additional
smoothness condition f(x) ∈ C1,1 with constant L1.
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Given the gradient estimate in (4), we have that

E[‖g̃(xt)‖2] ≤ E[
(f(xt + δut)− f(xt−1 + δut−1))2

δ2
‖ut‖2].

(A.2)
Next, we bound the term (f(xt+δut)−f(xt−1+δut−1))2.
Adding and subtracting f(xt−1 +δut) inside the square,
and applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we can
obtain

(f(xt + δut)− f(xt−1 + δut−1))2

≤ 2(f(xt + δut)− f(xt−1 + δut))
2

+ 2(f(xt−1 + δut)− f(xt−1 + δut−1))2. (A.3)

Since the function f(x) is also Lipschitz continuous with
constant L0, we get that

(f(xt + δut)− f(xt−1+δut))
2 ≤ L2

0‖xt − xt−1‖2

= L2
0η

2‖g̃(xt−1)‖2. (A.4)

Next, we bound the term (f(xt−1 + δut) − f(xt−1 +
δut−1))2. Adding and subtracting f(xt−1), 〈∇f(xt−1), δut〉
and 〈∇f(xt−1), δut−1〉 inside the square term, we have
that

(f(xt−1 + δut)− f(xt−1 + δut−1))2

≤ 2〈∇f(xt−1), δ(ut − ut−1)〉2 (A.5)

+ 4(f(xt−1 + δut)− f(xt−1)− 〈∇f(xt−1), δut〉)2

+ 4(f(xt−1 + δut−1)− f(xt−1)− 〈∇f(xt−1), δut−1〉)2.

Since f(x) ∈ C1,1 with constant L1, we get that
|f(xt−1+δut)−f(xt−1)−〈∇f(xt−1), δut〉| ≤ 1

2L1δ
2‖ut‖2,

according to (6) in Nesterov & Spokoiny (2017). And
similarly, we also have |f(xt−1 + δut−1) − f(xt−1) −
〈∇f(xt−1), δut−1〉| ≤ 1

2L1δ
2‖ut−1‖2. Substituting these

inequalities into (A.5), we obtain that

(f(xt−1 + δut)− f(xt−1 + δut−1))2 ≤ 2〈∇f(xt−1),

δ(ut − ut−1)〉2 + L2
1δ

4‖ut‖4 + L2
1δ

4‖ut−1‖4. (A.6)

Moreover, substituting the inequalities (A.4) and (A.6)
in the upper bound in (A.3), we get that

(f(xt + δut)− f(xt−1 + δut−1))2

≤2L2
0η

2‖g̃(xt−1)‖2 + 4〈∇f(xt−1), δ(ut − ut−1)〉2

+ 2L2
1δ

4‖ut‖4 + 2L2
1δ

4‖ut−1‖4 (A.7)

Using the bound (A.7) in inequality (A.2), and applying
the bounds E[‖ut‖6] ≤ (d + 6)3 and E[‖ut−1‖4‖ut‖2] ≤
(d+ 6)3, we have that

E[‖g̃(xt)‖2] ≤ 2dL2
0η

2

δ2
E[‖g̃(xt−1)‖2] (A.8)

+ 4E[〈∇f(xt−1), ut − ut−1〉2‖ut‖2] + 4L2
1(d+ 6)3δ2.

Since 〈∇f(xt−1), ut − ut−1〉2 ≤ 2〈∇f(xt−1), ut〉2 +
2〈∇f(xt−1), ut−1〉2, we get that

E[〈∇f(xt−1), ut − ut−1〉2‖ut‖2] ≤ 2E[〈∇f(xt−1),

ut〉2‖ut‖2] + 2E[〈∇f(xt−1), ut−1〉2‖ut‖2]. (A.9)

For the term E[〈∇f(xt−1), ut−1〉2‖ut‖2], we have that
E[〈∇f(xt−1), ut−1〉2‖ut‖2] ≤ E[‖∇f(xt−1)‖2‖ut−1‖2
‖ut‖2] ≤ d2E[‖∇f(xt−1)‖2]. For the term E[〈∇f(xt−1),
ut〉2‖ut‖2], according to Theorem 3 in Nesterov &
Spokoiny (2017), we have a stronger boundE[〈∇f(xt−1),
ut〉2‖ut‖2] ≤ (d+ 4)E[‖∇f(xt−1)‖2]. Substituting these
bounds into (A.9), and because d2 + d + 4 ≤ (d + 4)2,
we have that

E[〈∇f(xt−1), ut − ut−1〉2‖ut‖2]

≤ 2(d+ 4)2E[‖∇f(xt−1)‖2]. (A.10)

Substituting the bound (A.10) into inequality (A.8), we
complete the proof.

B Proof of Theorem 7

Since we have that f(x) ∈ C0,0, according to Lemma 2,
the function fδ(x) has L1(fδ)-Lipschitz continuous gra-

dient where L1(fδ) =
√
d
δ L0. Furthermore, according to

Lemma 1.2.3 in Nesterov (2013), we can get the follow-
ing inequality

fδ(xt+1) ≤ fδ(xt) + 〈∇fδ(xt), xt+1 − xt〉

+
L1(fδ)

2
‖xt+1 − xt‖2

= fδ(xt)− η〈∇fδ(xt), g̃(xt)〉+
L1(fδ)η

2

2
‖g̃(xt)‖2

= fδ(xt)− η〈∇fδ(xt),∆t〉 − η‖∇fδ(xt)‖2

+
L1(fδ)η

2

2
‖g̃(xt)‖2, (B.1)

where ∆t = g̃(xt) − ∇fδ(xt). According to Lemma 5,
we can get that Eut

[g̃(xt)] = ∇fδ(xt). Therefore, taking
expectation over ut on both sides of inequality (B.1) and
rearranging terms, we have that

ηE[‖∇fδ(xt)‖2] ≤E[fδ(xt)]− E[fδ(xt+1)]

+
L1(fδ)η

2

2
E[‖g̃(xt)‖2]. (B.2)

11



Telescoping above inequalities from t = 0 to T − 1 and
dividing both sides by η, we obtain that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤E[fδ(x0)]− E[fδ(xT )]

η

+
L1(fδ)η

2

T−1∑
t=0

E[‖g̃(xt)‖2]

≤ E[fδ(x0)]− f∗δ
η

+
L1(fδ)η

2

T−1∑
t=0

E[‖g̃(xt)‖2], (B.3)

where f∗δ is the lower bound of the smoothed function
fδ(x). f∗δ must exist because we assume the orignal func-
tion f(x) is lower bounded and the smoothed function
has a bounded distance from f(x) due to Lemma 2.

Recall the contraction result of the second moment
E[‖g̃(xt)‖2] in Lemma 6 when f(x) ∈ C0,0. Denote the

contraction rate
2dL2

0η
2

δ2 as α and the constant pertur-

bation term M = 8L2
0(d+ 4)2. Then, we get that

E[‖g̃(xt)‖2] ≤ αtE[‖g̃(x0)‖2] +
1− αt

1− α
M. (B.4)

Summing the above inequality over time, we obtain

T−1∑
t=0

‖g̃(xt)‖2 ≤
1− αT

1− α
E[‖g̃(x0)‖2] +

T−1∑
t=0

(1− αt

1− α
M
)

≤ 1

1− α
E[‖g̃(x0)‖2] +

1

1− α
MT. (B.5)

Plugging the bound in (B.5) into inequality (B.3), and

since L1(fδ) =
√
d
δ L0, we have that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
d

1
2L0η

2δ( 1

1− α
E[‖g̃(x0)‖2] +

1

1− α
8L2

0(d+ 4)2T
)
. (B.6)

To fullfill the requirement that |f(x) − fδ(x)| ≤ εf , we
set the exporation parameter δ =

εf

d
1
2 L0

. In addition, let

the stepsize be η =
√
εf

2dL2
0T

1
2

. We have that α = 1
2Tεf

≤ 1
2

and 1
1−α ≤ 2, when T ≥ 1

εf
. Plugging the choices of η

and δ into inequality (B.6), we obtain that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ 2L2
0

(
E[fδ(xt)]− f∗δ

) d
√
εf

√
T

+
1

2
√
εfT

E[‖g̃(x0)‖2] + 4L2
0

(d+ 4)2
√
εf

√
T .

Dividing both sides of above inequality by T , we com-
plete the proof.

C Proof of Theorem 8

Following the same process in the beginning of the proof
of Theorem 7, we can get

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
L1η

2

T−1∑
t=0

E[‖g̃(xt)‖2].

(C.1)
Since 1

2E[‖∇f(xt)‖2] ≤ E[‖∇fδ(xt)‖2] + E[‖∇f(xt) −
∇fδ(xt)‖2], and according to the bound (C.1) and
Lemma 2, we have that

1

2

T−1∑
t=0

‖E[‖∇f(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
L1η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + L2
1(d+ 3)3δ2T. (C.2)

In addition, similar to the process to derive the bound
in (B.5), according to Lemma 6, when f(x) ∈ C1,1, we
can get that

T−1∑
t=0

‖g̃(xt)‖2 ≤
1

1− α
E[‖g̃(x0)‖2] +

8

1− α
(d+ 4)2

T−1∑
t=0

‖∇f(xt)‖2 +
4

1− α
L2
1(d+ 6)3δ2T. (C.3)

Plugging the bound (C.3) into (C.2), we have that

1

2

T−1∑
t=0

‖E[‖∇f(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
L1η

2

( 1

1− α
E[‖g̃(x0)‖2] +

4

1− α
L2
1(d+ 6)3δ2T

+
8

1− α
(d+ 4)2

T−1∑
t=0

E[‖∇f(xt)‖2]
)

+ L2
1(d+ 3)3δ2T. (C.4)

Recalling that L̃ = max{32L1, 2L0}, let η = 1

L̃(d+4)2T
1
3

and δ = 1√
dT

1
3

, and we have that α = 2dL2
0
η2

δ2 ≤
1
2 . In

addition, the coefficient before the term ‖∇f(xt)‖2 in

the upper bound above L1η
2

8
1−α (d+ 4)2 ≤ 1

4 . Therefore,

12



we obtain that

1

4

T−1∑
t=0

‖E[‖∇f(xt)‖2] ≤ L̃(E[fδ(x0)]− f∗δ )(d+ 4)2T
1
3

+
1

32(d+ 4)2T
1
3

E[‖g̃(x0)‖2] +
L2
1

8

(d+ 6)3

(d+ 4)2d

+ L2
1

(d+ 3)3

d
T

1
3 .

Dividing both sides of above inequality by T , we com-
plete the proof.

D Proof of Theorem 9

First, according to iteration (5), we have that

‖xt+1 − x∗‖2 ≤ ‖xt − ηg̃(xt)− x∗‖2

= ‖xt − x∗‖2 − 2η 〈g̃(xt), xt − x∗〉+ η2‖g̃(xt)‖2.

Taking expectation on both sides, and since E[g̃(xt)] =
∇fδ(xt), we obtain that

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2]− 2η〈∇fδ(xt), xt − x∗〉
+ η2E[‖g̃(xt)‖2]. (D.1)

Due to the convexity, we have that 〈∇fδ(xt), xt−x∗〉 ≥
fδ(xt) − fδ(x∗). Plugging this inequality into (D.1), we
have that

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2]− 2η(fδ(xt)− fδ(x∗))
+ η2E[‖g̃(xt)‖2]. (D.2)

When f(x) ∈ C0,0, using Lemma (2), we can replace
fδ(x) with f(x) in above inequality and get

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2]− 2η(f(xt)− f(x∗))

+ η2E[‖g̃(xt)‖2] + 4L0

√
dδη.

Rearranging the terms and telescoping from t = 0 to
T − 1, we obtain that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
(‖x0 − x∗‖2 − E[‖xT − x∗‖2])

+
η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + 2L0

√
dδT

≤ 1

2η
‖x0 − x∗‖2 +

η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + 2L0

√
dδT

Since function f(x) ∈ C0,0, we can plug the bound (B.5)
into the above inequality and get that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2(1− α)
E[‖g̃(x0)‖2] +

4η

1− α
L2
0(d+ 4)2T + 2L0

√
dδT.

Let η = 1
2dL0

√
T

and δ = 1√
T

. We have that α =

2dL2
0
η2

δ2 = 1
2d ≤

1
2 . Therefore, 1

1−α ≤ 2. Applying this
bound and the choice of η and δ into above inequality,
we have that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ L0‖x0 − x∗‖2d
√
T

+
1

2dL0

√
T
E[‖g̃(x0)‖2] + 4L0

(d+ 4)2

d

√
T + 2L0

√
d
√
T .

Recalling that f(x̄) ≤ 1
T

∑T−1
t=0 f(xt) due to convexity

and dividing both sides of above inequality by T , the
proof of the nonsmooth case is complete.

When function f(x) ∈ C1,1, it is straightforward to see
that we also have the inequality (D.2). In addition, ac-
cording to Lemma 2, we can replace fδ(x) with f(x) in
above inequality and get

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2]− 2η(f(xt)− f(x∗))

+ η2E[‖g̃(xt)‖2] + 4L1dδ
2η. (D.3)

Similarly to the above analysis, we telescope the above
inequality from t = 0 to T − 1, apply the bound on∑T−1
t=0 E[‖g̃(xt)‖2] in (C.3) and obtain that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2(1− α)
E[‖g̃(x0)‖2] +

2η

1− α
L2
1(d+ 6)3δ2T

+
4η

1− α
(d+ 4)2

T−1∑
t=0

E[‖∇f(xt)‖2] + 2L1dδ
2T.

Since f(x) ∈ C1,1 is convex, we have that ‖∇f(xt)‖2 ≤
2L1(f(xt) − f(x∗)) according to (2.1.7) in Nesterov
(2013). Applying this bound into the above inequality,

13



we get that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2(1− α)
E[‖g̃(x0)‖2] +

2η

1− α
L2
1(d+ 6)3δ2T

+
8η

1− α
L1(d+ 4)2

( T−1∑
t=0

E[f(xt)]− Tf(x∗)
)

+ 2L1dδ
2T.

Let η = 1

2L̃(d+4)2T
1
3

and δ =
√
d

T
1
3

where L̃ =

max{L0, 16L1}. Then, we have that α = 2dL2
0
η2

δ2 ≤
1

2(d+4)4 ≤
1
2 . In addition, we have that 8η

1−αL1(d+ 4)2 ≤
1

2T
1
3
≤ 1

2 . Applying these two bounds into above in-

equality and rearranging terms, we have that

1

2

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ L̃‖x0 − x∗‖2(d+ 4)2T
1
3

+
1

2L̃(d+ 4)2T
1
3

E[‖g̃(x0)‖2] +
L1

8

(d+ 6)3d

(d+ 4)2
+ 2L1d

2T
1
3 .

Recalling that f(x̄) ≤ 1
T

∑T−1
t=0 f(xt) due to convexity

and dividing both sides of above inequality by T , the
proof of the smooth case is complete.

E Proof of Lemma 12

The analysis is similar to the proof in Section A. First,
consider the case when F (x, ξ) ∈ C0,0 with L0(ξ). Ac-
cording to (7), we have that

E[‖g̃(xt)‖2]

= E[
1

δ2
(
F (xt + δut, ξt)− F (xt−1 + δut−1, ξt−1)

)2‖ut‖2]

≤ 2

δ2
E[
(
F (xt + δut, ξt)− F (xt−1 + δut−1, ξt)

)2‖ut‖2]

+
2

δ2
E[
(
F (xt−1 + δut−1, ξt)− F (xt−1 + δut−1, ξt−1)

)2‖ut‖2].

Using the bound in Assumption 10, we get that
2
δ2E[

(
F (xt−1+δut−1, ξt)−F (xt−1+δut−1, ξt−1)

)2‖ut‖2] ≤
8dσ2

δ2 . In addition, adding and subtracting F (xt−1 +

δut, ξt) in
(
F (xt + δut, ξt) − F (xt−1 + δut−1, ξt)

)2
in

above inequality, we obtain that

E[‖g̃(xt)‖2] ≤ 8dσ2

δ2
+

4

δ2
E[
(
F (xt + δut, ξt)− F (xt−1 + δut, ξt)

)2‖ut‖2]

+
4

δ2
E[
(
F (xt−1 + δut, ξt)− F (xt−1 + δut−1, ξt)

)2‖ut‖2]

Using Assumption 11, we can bound the last two items
on the right hand side of above inequality following the
same procedure after inequality (A.1) and get that

E[‖g̃(xt)‖2] ≤ 4dL2
0η

2

δ2
E[‖g̃(xt−1)‖2]+16L2

0(d+4)2+
8dσ2

δ2
.

The proof is complete.

F Proof of Theorem 13

When function F (x) ∈ C0,0 with L0(ξ), using Assump-
tion 11 and following the same procedure in Section B,
we have that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
L1(fδ)η

2

T−1∑
t=0

E[‖g̃(xt)‖2], (F.1)

where L1(fδ) =
√
d
δ L0. In addition, according to

Lemma 12, we get that

T−1∑
t=0

E[‖g̃(xt)‖2] ≤ 1

1− α
E[‖g̃(x0)‖2] +

16L2
0

1− α
(d+ 4)2T

+
8σ2

1− α
d

δ2
T, (F.2)

where α =
4dL2

0η
2

δ2 . Plugging (F.2) into the bound in
(F.1), we obtain that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ E[fδ(x0)]− f∗δ
η

+
4σ2L0

1− α
d1.5

η

δ3
T

+

√
dL0

2(1− α)
E[‖g̃(x0)‖2]

η

δ
+

8L3
0

√
d

1− α
(d+ 4)2

η

δ
T.

(F.3)

Similar to Section B, to fullfill the requirement that
|f(x)−fδ(x)| ≤ εf , we set the exporation parameter δ =
εf

d
1
2 L0

. In addition, let the stepsize be η =
ε1.5f

2
√
2L2

0d
1.5T

1
2

.

Then, we have that α =
4dL2

0η
2

δ2 =
εf
2dT ≤

1
2 when

T ≥ 1
dεf

. Therefore, we have that 1
1−α ≤ 2. Applying this

bound and the choices of η and δ into the bound (F.3),
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we obtain that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ 2
√

2L2
0(E[fδ(x0)]− f∗δ )

d1.5
√
T

ε1.5f

+
L0ε

0.5
f

2
√

2dT
E[‖g̃(x0)‖2] + 4

√
2L2

0

(d+ 4)2√
d

√
εfT

+ 2
√

2σ2L2
0

d1.5
√
T

ε1.5f
.

Dividing both sides by T , the proof for the nonsmooth
case is complete.

When function F (x, ξ) ∈ C1,1 with L1(ξ), according to
Assumption 11, we also have that fδ(x), f(x) ∈ C1,1

with constant L1. Similarly to the proof in Section C,
we get that

1

2

T−1∑
t=0

‖E[‖∇f(x)‖2‖] ≤ E[fδ(x0)]− f∗δ
η

+
L1η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + L2
1(d+ 3)3δ2T. (F.4)

Plugging inequality (F.2) into the above upper bound,
we obtain that

1

2

T−1∑
t=0

‖E[‖∇f(x)‖2‖] ≤ E[fδ(x0)]− f∗δ
η

+
L1η

2(1− α)
E[‖g̃(x0)‖2] +

8L2
0L1

1− α
(d+ 4)2ηT

+
4L1σ

2

1− α
dη

δ2
T + L2

1(d+ 3)3δ2T. (F.5)

Let η = 1

2
√
2L0d

4
3 T

2
3

and δ = 1

d
5
6 T

1
6

. Then, α =
4dL2

0η
2

δ2 =

1
2T ≤

1
2 and 1

1−α ≤ 2. Plugging these results into the
above inequality, we get that

1

2

T−1∑
t=0

‖E[‖∇f(x)‖2‖] ≤ 2
√

2L0(E[fδ(x0)]− f∗δ )d
4
3T

2
3

+
L1

2
√

2L0d
4
3T

2
3

E[‖g̃(x0)‖2] + 4
√

2L0L1
(d+ 4)2

d
4
3

T
1
3

+
2
√

2L1σ
2

L0d
1
3

T
1
3 + L2

1

(d+ 3)3

d
5
3

T
2
3 . (F.6)

Dividing both sides by T , the proof for the smooth case
is complete.

G Proof of Theorem 14

When the function f(x) ∈ C0,0 with constant L0(ξ) is
convex, we can follow the same procedure as in Section D

and get that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + 2L0

√
dδT.

Plugging the bound (F.2) into above inequality, we have
that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2(1− α)
E[‖g̃(x0)‖2] +

8L2
0

1− α
(d+ 4)2ηT

+
4σ2

1− α
dη

δ2
T + 2L0

√
dδT. (G.1)

Let η = 1

2
√
2L0

√
dT

3
4

and δ = 1

T
1
4

. Then, we have that

α =
4dL2

0η
2

δ2 = 1
2T ≤

1
2 . Plugging these results into the

above inequality, we get that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤
√

2L0‖x0 − x∗‖2
√
dT

3
4

+
1

2
√

2L0

√
dT

3
4

E[‖g̃(x0)‖2] + 4
√

2L0
(d+ 4)2√

d
T

1
4

+
2
√

2σ2

L0

√
dT

3
4 + 2L0

√
dT

3
4 . (G.2)

Dividing both sides by T , the proof for the nonsmooth
case is complete.

When the function f(x) ∈ C1,1 with constant L1(ξ), we
can also get the inequality (D.3) in Section D. Telescop-
ing this inequality from t = 0 to T − 1 and rearranging
terms, we obtain

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2

+
η

2

T−1∑
t=0

E[‖g̃(xt)‖2] + 2L1dδ
2T. (G.3)

Plugging the bound (F.2) into above inequality, we have
that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤ 1

2η
‖x0 − x∗‖2 + 2L1dδ

2T

+
η

2(1− α)
E[‖g̃(x0)‖2] +

8L2
0

1− α
(d+ 4)2ηT +

4σ2

1− α
dη

δ2
T.
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Let η = 1

2
√
2L0d

2
3 T

2
3

and δ = 1

d
1
6 T

1
6

. Then, we have that

α =
4dL2

0η
2

δ2 = 1
2T ≤

1
2 . Plugging these parameters into

above inequality, we get that

T−1∑
t=0

E[f(xt)]− Tf(x∗) ≤
√

2L0‖x0 − x∗‖2d
2
3T

2
3

+
1

2
√

2L0d
2
3T

2
3

E[‖g̃(x0)‖2] + 4
√

2L0
(d+ 4)2

d
2
3

T
1
3

+
2
√

2σ2

L0
d

2
3T

2
3 + 2L1d

2
3T

2
3 .

Dividing both sides by T , the proof for the smooth case
is complete.

H Analysis of SGD with Mini-batch Residual
Feedback

In this section, we analyze the query complexity of SGD
with the mini-batch residual feedback. First, we make
some additional assumptions.

Assumption 15 When function F (x, ξ) ∈ C1,1, we as-
sume that

Eξ[‖∇F (x, ξ)− E[∇F (x, ξ)]‖2] ≤ σ2
g .

Before presenting the main results, we first establish
some important lemmas. The following lemma provides
a characterization for the estimation variance of the es-
timator g̃b(xt).

Lemma 16 When function F (x, ξ) ∈ C0,0 with con-
stant L0(ξ), given Assumptions 10 and 11, we have that

E‖g̃b(xt)‖2 ≤
4(d+ 2)L2

0

δ2
E‖xt − xt−1‖2

+ 16L2
0(d+ 4)2 +

8(d+ 2)σ2

δ2b
. (H.1)

Furthermore, when functionF (x, ξ) ∈ C1,1 with constant
L1(ξ), given Assumptions 10, 11 and 15, we have that

E‖g̃b(xt)‖2 ≤ 12L2
1δ

2(d+ 6)3 +
6(d+ 2)L2

0η
2

δ2
E‖g̃b(xt−1)‖2

+ 24(d+ 4)E(‖∇f(xt)‖2 + ‖∇f(xt−1)‖2)

+
48(d+ 4)σ2

g

b
+

8(d+ 2)σ2

δ2b
.

PROOF. When function F (x, ξ) ∈ C0,0, based on the

definition of g̃(xt), we have

‖g̃b(xt)‖2 =
1

δ2b2
|F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ1:b)

+ F (xt−1 + δut−1; ξ1:b)− F (xt−1 + δut−1, ξ
′
1:b)|2‖ut‖2

≤ 2

δ2b2
(
|F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ1:b)|2+

|F (xt−1 + δut−1, ξ1:b)− F (xt−1 + δut−1, ξ
′
1:b)|2

)
‖ut‖2

≤4L2
0

δ2
‖xt − xt−1‖2‖ut‖2 + 4L2

0‖ut − ut−1‖2‖ut‖2

+
2

δ2b2
|F (xt−1 + δut−1, ξ1:b)− F (xt−1 + δut−1, ξ

′
1:b)|2‖ut‖2.

Taking expectation over the above inequality yields

E‖g̃b(xt)‖2

≤ 4L2
0

δ2
E
(
‖xt − xt−1‖2‖ut‖2

)
+ 4L2

0E
(
‖ut − ut−1‖2‖ut‖2

)
+

2

δ2b2
E
(
|F (xt−1 + δut−1, ξ1:b)

− F (xt−1 + δut−1, ξ
′
1:b)|2‖ut‖2

)
≤ 4L2

0

δ2
E
(
‖xt − xt−1‖2Eut

‖ut‖2
)

+ 8L2
0E
(
‖ut‖4 + ‖ut−1‖2‖ut‖2

)
+

2

δ2
E
(
|F (xt−1 + δut−1, ξ1:b)

− F (xt−1 + δut−1, ξ
′
1:b)|2‖ut‖2

)
(i)

≤ 4(d+ 2)L2
0

δ2
E‖xt − xt−1‖2 + 8L2

0

(
(d+ 4)2 + (d+ 2)2

)
+

2

δ2b2
E
(
|F (xt−1 + δut−1, ξ1:b)

− F (xt−1 + δut−1, ξ
′
1:b)|2‖ut‖2

)
≤ 4(d+ 2)L2

0

δ2
E‖xt − xt−1‖2 + 16L2

0(d+ 4)2

+
4

δ2b2
E|F (xt−1 + δut−1, ξ1:b)− bf(xt−1 + δut−1)|2‖ut‖2︸ ︷︷ ︸

(P )

+
4

δ2b2
E|F (xt−1 + δut−1, ξ

′
1:b)− bf(xt−1 + δut−1)|2‖ut‖2︸ ︷︷ ︸

(Q)

,

(H.2)

where (i) follows from Lemma 1 in Nesterov & Spokoiny
(2017) that E‖u‖p ≤ (d+p)p/2 for a d-dimensional stan-
dard Gaussian random vector. Our next step is to upper-
bound (P ) and (Q) in the above inequality. For (P ),
conditioning on xt−1 and ut−1 and noting that ξ1:b is
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independent of ut, we have

(P ) = Eξ1:b
∣∣∣ ∑
ξ∈ξ1:b

(
F (xt−1 + δut−1, ξ)

− f(xt−1 + δut−1)
)∣∣∣2Eut

‖ut‖2

≤ (d+ 2)Eξ1:b
∣∣∣ ∑
ξ∈ξ1:b

(
F (xt−1 + δut−1, ξ)

− f(xt−1 + δut−1)
)∣∣∣2

= b(d+ 2)Eξ|F (xt−1 + δut−1, ξ)− f(xt−1 + δut−1)|2

+ (d+ 2)
∑

i 6=j,ξi,ξj∈ξ1:b

〈EξiF (xt−1 + δut−1, ξi)

− f(xt−1 + δut−1),EξjF (xt−1 + δut−1, ξj)

− f(xt−1 + δut−1)〉
= b(d+ 2)Eξ‖F (xt−1 + δut−1, ξ)

− f(xt−1 + δut−1)‖2 ≤ b(d+ 2)σ2. (H.3)

Unconditioning on xt−1 and ut−1 in the above equality
yields (P ) ≤ b(d+ 2)σ2. For the term (Q), we have

(Q) = E
(
|F (xt−1 + δut−1, ξ

′
1:b)− bf(xt−1 + δut−1)|2

Eut
‖ut‖2

∣∣xt−1, ξ′1:b, ut−1)
≤ (d+ 2)E|F (xt−1 + δut−1, ξ

′
1:b)− bf(xt−1 + δut−1)|2,

which, using an approach similar to the steps in (H.3),
yields

(Q) ≤ b(d+ 2)σ2. (H.4)

Combining (H.2), (H.3) and (H.4) yields the proof when
F (x, ξ) ∈ C0,0.

When function F (x, ξ) ∈ C1,1, based on the definition
of g̃b(xt), we have

‖g̃b(xt)‖2 =
1

δ2b2
|F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ1:b)

+ F (xt−1 + δut−1, ξ1:b)− F (xt−1 + δut−1, ξ
′
1:b)|2‖ut‖2

≤ 2

δ2b2
|F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ1:b)|2‖ut‖2

+
2

δ2b2
|F (xt−1 + δut−1, ξ1:b)− F (xt−1 + δut−1, ξ

′
1:b)|2‖ut‖2,

which, taking expectation and using an approach similar
to (H.2), yields

E‖g̃(xt)‖2 ≤
8(d+ 2)σ2

δ2b
+

2

δ2b2
E|F (xt + δut, ξ1:b)− F (xt−1 + δut−1, ξ1:b)|2‖ut‖2︸ ︷︷ ︸

(P )

.

(H.5)

Our next step is to upper-bound (P ) in the above in-
equality. We first divide (P ) into three parts such that
(P ) ≤ 3E

[
(P1) + (P2) + (P3)

]
, where

(P1) =|F (xt + δut, ξ1:b)− F (xt, ξ1:b)−
〈δut,∇F (xt, ξ1:b)〉+ 〈δut,∇F (xt, ξ1:b)〉 |2‖ut‖2,

(P2) =|F (xt, ξ1:b)− F (xt−1, ξ1:b)|2‖ut‖2, and

(P3) =|F (xt−1, ξ1:b)− F (xt−1 + δut−1, ξ1:b)

+ 〈δut−1,∇F (xt−1, ξ1:b)〉 − 〈δut−1,∇F (xt−1, ξ1:b)〉 |2‖ut‖2

Using the assumption that F (x; ξ) ∈ C0,0∩C1,1, we have

(P1) ≤ b2L2
1δ

4‖ut‖6 + 2δ2| 〈ut,∇F (xt, ξ1:b)〉 |2‖ut‖2,
(P2) ≤ b2L2

0‖xt − xt−1‖2‖ut‖2,
(P3) ≤ b2L2

1δ
4‖ut−1‖4‖ut‖2 + 2δ2| 〈ut−1,∇F (xt−1, ξ1:b)〉 |2‖ut‖2.

Plugging the above inequalities into (P ) ≤ 3E
[
(P1) +

(P2) + (P3)
]
, we have

(P ) ≤ 3b2L2
1δ

4E‖ut‖6 + 6δ2E| 〈ut,∇F (xt, ξ1:b)〉 |2‖ut‖2

+ 3b2L2
0E‖xt − xt−1‖2‖ut‖2

+ 3b2L2
1δ

4E‖ut−1‖4‖ut‖2

+ 6δ2E| 〈ut−1,∇F (xt−1, ξ1:b)〉 |2‖ut‖2, (H.6)

Based on the results in Nesterov & Spokoiny (2017), we

haveEu[‖u‖p] ≤ (d+p)p/2,E[〈ut,∇F (xt, ξ1:b)〉2 ‖ut‖2] ≤
(d + 4)‖∇F (xt, ξ1:b)‖2, E[〈ut−1,∇F (xt−1, ξ1:b)〉2] ≤
‖∇F (xt, ξ1:b)‖2, which, in conjunction with (H.6), yields

(P ) ≤ 6b2L2
1δ

4(d+ 6)3 + 3b2(d+ 2)L2
0E‖xt − xt−1‖2

+ 6(d+ 4)δ2E‖∇F (xt, ξ1:b)‖2

+ 6(d+ 2)δ2E‖∇F (xt−1, ξ1:b)‖2
(i)

≤ 6b2L2
1δ

4(d+ 6)3 + 3b2(d+ 2)L2
0E‖xt − xt−1‖2

+ 12b2(d+ 4)δ2E‖∇f(xt)‖2 + 12b(d+ 4)δ2σ2
g

+ 12b2(d+ 2)δ2E‖∇f(xt−1)‖2 + 12b(d+ 2)δ2σ2
g

≤ 6b2L2
1δ

4(d+ 6)3 + 3b2(d+ 2)L2
0E‖xt − xt−1‖2

+ 12b2(d+ 4)δ2E‖∇f(xt)‖2 + 24b(d+ 4)δ2σ2
g

+ 12b2(d+ 2)δ2E‖∇f(xt−1)‖2. (H.7)

Combining (H.7) and (H.5) yields

E‖g̃b(xt)‖2 ≤ 12L2
1δ

2(d+ 6)3 +
6(d+ 2)L2

0η
2

δ2
E‖g̃b(xt−1)‖2

+ 24(d+ 4)E(‖∇f(xt)‖2 + ‖∇f(xt−1)‖2) +
48(d+ 4)σ2

g

b

+
8(d+ 2)σ2

δ2b
, (H.8)

which finishes the proof.
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First, we analyze the convergence when the problem is
non-smooth. Based on Lemma 16, we provide an upper
bound on E‖xt+1 − xt‖2.

Lemma 17 Suppose Assumptions 10 and 11 are satis-
fied. Then, we have

E‖xt+1 − xt‖2 ≤ βt1
(
E‖x1 − x0‖2 −

β2
1− β1

)
+

β2
1− β1

,

where β1 =
4η2(d+2)L2

0

δ2 and β2 = 16η2L2
0(d + 4)2 +

8η2(d+2)σ2

δ2b .

PROOF. Based on the update that xt+1 − xt =
−ηg̃b(xt) and Lemma 16, we have

E‖xt+1 − xt‖2 = η2‖g̃b(xt)‖2

≤ η2
(4(d+ 2)L2

0

δ2
E‖xt − xt−1‖2 + 16L2

0(d+ 4)2

+
8(d+ 2)σ2

δ2b

)
=

4η2(d+ 2)L2
0

δ2
E‖xt − xt−1‖2 + 16η2L2

0(d+ 4)2

+
8η2(d+ 2)σ2

δ2b
= β1E‖xt − xt−1‖2 + β2.

Then, telescoping the above inequality yields the proof.

Nonsmooth Nonconvex Geometry

Based on the above lemmas, we next provide the con-
vergence and complexity analysis for our proposed algo-
rithm for the case where F (x; ξ) is nonconvex and be-
longs to C0,0.

Theorem 18 Suppose Assumptions 10 and 11 are

satisfied. Choose η =
ε
1/2

f

2(d+2)3/2T 1/2L2
0

, δ =
εf

(d+2)1/2L0

and b = σ2

ε2
f

≥ 1 for certain εf < 1. Then, we have

E‖∇fδ(xζ)‖2 ≤ O
(

d3/2

ε
1/2

f

√
T

)
with the approximation

error |fδ(xζ)− f(xζ)| < θ, where ζ is uniformly sampled
from {0, 1, . . . , T − 1}. Then, to achieve an ε-accurate
stationary point of fδ, the corresponding total function
query complexity is given by

Tb = O

(
σ2d3

ε3f ε
2

)
. (H.9)

PROOF. Recall that fδ(x) = Euf(x + δu) is a
smoothed approximation of f(x), where u ∈ Rd is a

standard Gaussian random vector. Based on Lemma 2
in Nesterov & Spokoiny (2017), we have fδ ∈ C1,1 with

gradient-Lipschitz constant Lδ satisfying Lδ ≤ d1/2

δ L0,
and thus

fδ(xt+1) ≤ fδ(xt) + 〈∇fδ(xt), xt+1 − xt〉+
Lδ
2
‖xt+1 − xt‖2

≤ fδ(xt) + 〈∇fδ(xt), xt+1 − xt〉+
d1/2L0

2δ
‖xt+1 − xt‖2

= fδ(xt)− η〈∇fδ(xt), g̃(xt)〉+
d1/2L0

2δ
‖xt+1 − xt‖2.

Taking expectation over the above inequality and using
E(g̃(xt)|xt) = ∇fδ(xt), we have

Efδ(xt+1) ≤ Efδ(xt)− ηE‖∇fδ(xt)‖2

+
d1/2L0

2δ
E‖xt+1 − xt‖2,

which, in conjunction with Lemma 17, yields

Efδ(xt+1) ≤ Efδ(xt)− ηE‖∇fδ(xt)‖2

+
d1/2L0

2δ
βt1

(
E‖x1 − x0‖2 −

β2
1− β1

)
+
d1/2L0

2δ

β2
1− β1

.

Telescoping the above inequality over t from 0 to T − 1
yields

T−1∑
t=0

ηE‖∇fδ(xt)‖2

≤ fδ(x0)− inf
x
fδ(x) +

d1/2L0T

2δ

β2
1− β1

+
d1/2L0

2δ

(
E‖x1 − x0‖2 −

β2
1− β1

) T−1∑
t=0

βt1

= fδ(x0)− inf
x
fδ(x) +

d1/2L0T

2δ

β2
1− β1

+
d1/2L0

2δ

(
E‖x1 − x0‖2 −

β2
1− β1

)1− βT1
1− β1

≤ f(x0)− inf
x
f(x) + 2δL0d

1/2 +
d1/2L0T

2δ

β2
1− β1

+
d1/2L0

2δ

(
E‖x1 − x0‖2 −

β2
1− β1

)1− βT1
1− β1

,

where the last inequality follows from Equation (3.11)
in Ghadimi & Lan (2013) and Equation (18) in Nesterov

& Spokoiny (2017). Choose η =
ε
1/2

f

2(d+2)3/2T 1/2L2
0

and

δ =
εf

(d+2)1/2L0
with certain εf < 1, and set T > 1

2εfd
.

Then, we have β1 = 1
εf (d+2)T < 1

2 , and thus the above
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inequality yields

T−1∑
t=0

ηE‖∇fδ(xt)‖2 ≤ f(x0)− inf
x
f(x) + 2δL0d

1/2

+
β2d

1/2L0T

δ
+
d1/2L0η

2

δ
E‖g̃b(x0)‖2.

Choosing ζ from 0, 1, ..., T −1 uniformly at random, and
rearranging the above inequality, we have

E‖∇fδ(xζ)‖2 ≤
f(x0)− infx f(x)

ηT
+

2δL0d
1/2

ηT

+
d1/2L0η

δT
E‖g̃(x0)‖2 +

16η(d+ 4)2d1/2L3
0

δ

+
8η(d+ 2)d1/2L0σ

2

δ3b

≤O
(

1

ηT
+
δL0d

1/2

ηT
+
d1/2L0η

δT
+
ηd5/2L3

0

δ
+
ηd3/2L0σ

2

δ3b

)
,

which, in conjunction with η =
ε
1/2

f

2(d+2)3/2T 1/2L2
0

, δ =
εf

(d+2)1/2L0
and b = σ2

ε2
f

, yields

E‖∇fδ(xζ)‖2

≤ O
(

1

ηT
+
δL0d

1/2

ηT
+
d1/2L0η

δT
+
ηd5/2L3

0

δ
+
ηd3/2L0σ

2

δ3b

)
≤ O

(
d3/2L2

0

ε
1/2
f

√
T

+
ε
1/2
f d3/2L2

0√
T

+
1

ε
1/2
f d1/2T 3/2

+
d3/2σ2

ε
5/2
f

√
Tb

)

≤ O

((
1 +

σ2

ε2fb

) d3/2

ε
1/2
f

√
T

)
≤ O

(
d3/2

ε
1/2
f

√
T

)
.

Based on δ =
εf

(d+2)1/2L0
and Equation (18) in Nesterov

& Spokoiny (2017), we have |fδ(x)−f(x)| < εf . Then, to
achieve an ε-accurate stationary point of the smoothed
function fδ with approximation error |fδ(x) − f(x)| <
εf , εf < 1 , we need T ≤ O(ε−1f d3ε−2), and thus the
corresponding total function query complexity is given
by

Tb = O

(
σ2d3

ε3f ε
2

)
. (H.10)

Then, the proof is complete.

Nonsmooth Convex Geometry

In this part, we provide the convergence and complexity
analysis for our proposed algorithm for the case where
F (x; ξ) is convex and belongs to C0,0.

Theorem 19 Suppose Assumptions 10 and 11 are sat-
isfied and E‖g̃b(x0)‖2 ≤Md2T for certain constantM >

0. Choose η = 1
(d+2)

√
TL0

, δ = (d+2)1/2√
T

, b = σ2T
d2 , and

T > d2. Then, we have E
(
f(xζ)− infx f(x)

)
≤ O

(
d√
T

)
.

Then, to achieve an ε-accurate solution of f(x), the cor-
responding total function query complexity is given by

Tb = O
(σ2d2

ε4

)
. (H.11)

PROOF. Let x∗ be a minimizer of the function f , i.e.
x∗ = arg minx f(x). Then, we have

‖xt+1 − x∗‖2 = ‖xt − ηg̃b(xt)− x∗‖2

= ‖xt − x∗‖2 − 2η 〈g̃b(xt), xt − x∗〉+ E‖xt+1 − xt‖2.

Telescoping the above inequality over t from 0 to T − 1
yields that

‖xT − x∗‖2 = ‖x0 − x∗‖2 − 2η

T−1∑
t=0

〈g̃b(xt), xt − x∗〉

+

T−1∑
t=0

E‖xt+1 − xt‖2.

Taking expectation in the above equality using the fact
that E[g̃b(xt)|xt] = ∇fδ(xt), we further obtain that

E‖xT − x∗‖2 = ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E 〈∇fδ(xt), xt − x∗〉

+

T−1∑
t=0

E‖xt+1 − xt‖2

(i)

≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
fδ(xt)− fδ(x∗)

)
+

T−1∑
t=0

E‖xt+1 − xt‖2

(ii)

≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 4ηδL0

√
dT

+

T−1∑
t=0

E‖xt+1 − xt‖2,

(H.12)

where (i) follows from the convexity of fδ and (ii) uses

the fact that |fδ(x)−f(x)| ≤ δL0

√
d. Then, rearranging
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the above inequality yields

1

T

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
≤ ‖x0 − x

∗‖2

ηT
+ 4δL0

√
d

+
1

ηT

T−1∑
t=0

E‖xt+1 − xt‖2

(i)

≤ ‖x0 − x
∗‖2

ηT
+ 4δL0

√
d

+
1

ηT

T−1∑
t=0

(
βt1

(
E‖x1 − x0‖2 −

β2
1− β1

)
+

β2
1− β1

)
≤ ‖x0 − x

∗‖2

ηT
+ 4δL0

√
d

+
1

ηT

1− βT1
1− β1

(
E‖x1 − x0‖2 −

β2
1− β1

)
+

β2
η(1− β1)

,

where (i) follows from Lemma 17 with β1 =
4η2(d+2)L2

0

δ2

and β2 = 16η2L2
0(d + 4)2 + 8η2(d+2)σ2

δ2b . Recalling η =
1

(d+2)
√
TL0

, δ = (d+2)1/2√
T

, b = σ2T
d2 , and T > d2, we have

β1 < 1/2, and the above inequality yields

1

T

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
≤ ‖x0 − x

∗‖2

ηT
+ 4δL0

√
d

+
2η

T
E‖g̃b(x0)‖2 + 32ηL2

0(d+ 4)2 +
16η(d+ 2)σ2

δ2b

≤ O
(

d√
T

+
E‖g̃b(x0)‖2

dT 3/2

)
,

which, combined with E‖g̃b(x0)‖2 ≤Md2T for constant
M and choosing ζ from 0, .., T −1 uniformly at random,
yields

E
(
f(xζ)− f(x∗)

)
≤ O

( d√
T

)
.

To achieve an ε-accurate solution, i.e., E
(
f(xζ) −

f(x∗)
)
< ε, we need T = O(d2ε−2), and hence the

corresponding function query complexity is given by

Tb ≤ O
(
σ2d2ε−4

)
,

which finishes the proof.

H.1 Analysis in Smooth Setting

In this section, we provide the convergence and complex-
ity analysis for the proposed gradient estimator when
function F (x, ξ) ∈ C1,1

Smooth Nonconvex Geometry

In this part, we provide the convergence and complexity
analysis for the proposed gradient estimator for the case
where F (x; ξ) is nonconvex and belongs to C0,0 ∩ C1,1.

Theorem 20 Suppose Assumptions 10, 11 and 15 are
satisfied and E‖g̃b(x0)‖2 ≤MTd8/3 for certain constant
M > 0. Choose η = 1

4(d+2)4/3
√
T max(L0,L1)

< 1
8L1

, δ =

1
(d+2)5/6T 1/4 and b = max

(
σ2,

σ2
g√

Td5/3

)√
T . Then, we

have E‖∇fδ(xζ)‖2 ≤ O
(
d4/3√
T

)
. Then, to achieve an ε-

accurate stationary point of f , the total function query
complexity is given by

Tb = O
(
σ2d4ε−3 + σ2

gdε
−2).

PROOF. Based on Equation (12) in Nesterov &
Spokoiny (2017), the smoothed function fδ ∈ C1,1 with
gradient-Lipschitz constant less than L1. Then, we have

fδ(xt+1) ≤fδ(xt) + 〈∇fδ(xt), xt+1 − xt〉+
L1

2
‖xt+1 − xt‖2

=fδ(xt)− η〈∇fδ(xt), g̃b(xt)〉+
L1

2
‖xt+1 − xt‖2.

Let α =
6(d+2)L2

0η
2

δ2 , β = 12L2
1δ

2(d + 6)3 +
48(d+4)σ2

g

b +
8(d+2)σ2

δ2b and pt−1 = 24(d+4)E(‖∇f(xt)‖2+‖∇f(xt−1)‖2).
Then, telescoping the bound in Lemma 16 in the smooth
case yields

E‖g̃b(xt)‖2 ≤ αtE‖g̃b(x0)‖2 +

t−1∑
j=0

αt−1−jpj + β

t−1∑
j=0

αj

≤ αtE‖g̃b(x0)‖2 +

t−1∑
j=0

αt−1−jpj +
β(1− αt)

1− α
. (H.13)

Taking expectation over the above inequality and using
E(g̃b(xt)|xt) = ∇fδ(xt), we have

Efδ(xt+1) ≤ Efδ(xt)− ηE‖∇fδ(xt)‖2 +
L1η

2

2
E‖g̃b(xt)‖2.

Telescoping the above inequality over t from 0 to T − 1

20



yields

Efδ(xk) ≤ fδ(x0)− η
T−1∑
t=0

E‖∇fδ(xt)‖2

+
L1η

2

2

T−1∑
t=0

E‖g̃b(xt)‖2

(i)

≤ fδ(x0)− η
T−1∑
t=0

E‖∇fδ(xt)‖2 +
L1η

2

2
E‖g̃b(x0)‖2

+
L1η

2

2

T−1∑
t=1

αtE‖g̃b(x0)‖2 +

t−1∑
j=0

αt−1−jpj +
β(1− αt)

1− α


= fδ(x0)− η

T−1∑
t=0

E‖∇fδ(xt)‖2 +
1− αT

1− α
L1η

2

2
E‖g̃b(x0)‖2

+
L1η

2

2

T−2∑
j=0

T−2−j∑
t=0

αtpj +
L1η

2

2

T−1∑
t=1

β(1− αt)
1− α

Since
∑T−2
j=0

∑T−2−j
t=0 αtpj ≤

∑T−2
j=0

∑T−2
t=0 αtpj , we have

that

Efδ(xk) ≤ fδ(x0)− η
T−1∑
t=0

E‖∇fδ(xt)‖2

+
1− αT

1− α
L1η

2

2
E‖g̃b(x0)‖2 +

L1η
2

2

T−2∑
j=0

T−2∑
t=0

αtpj

+
L1η

2

2

T−1∑
t=1

β(1− αt)
1− α

≤ fδ(x0)− η
T−1∑
t=0

E‖∇fδ(xt)‖2 +
1− αT

1− α
L1η

2

2
E‖g̃b(x0)‖2

+
L1η

2

2

1− αT−1

1− α

T−2∑
t=0

pt +
L1η

2

2

T−1∑
t=1

β(1− αt)
1− α

,

where (i) follows from (H.13). Choose η =
(
4(d +

2)4/3
√
T
)−1

max(L0, L1)−1 and δ = 1
(d+2)5/6T 1/4 . Then,

we have α ≤ 3
8 <

1
2 , and the above inequality yields

Efδ(xk) ≤ fδ(x0)− η
k−1∑
t=0

E‖∇fδ(xt)‖2 + L1η
2E‖g̃b(x0)‖2

+ L1η
2
T−2∑
t=0

pt + L1η
2Tβ.

Rearranging the above inequality and using |fδ(x)−f | ≤
δ2

2 L1d and ‖∇fδ(x) − ∇f(x)‖ ≤ δ
2L1(d + 3)3/2 proved

in Nesterov & Spokoiny (2017), we have

Ef(xk) ≤ f(x0) + δ2L1d−
η

2

T−1∑
t=0

E‖∇f(xt)‖2

+
ηT

4
δ2L2

1(d+ 3)3 + L1η
2E‖g̃b(x0)‖2

+ L1η
2
T−2∑
t=0

pt + L1η
2Tβ

≤f(x0) + δ2L1d−
η

2

T−1∑
t=0

E‖∇f(xt)‖2 +
ηT

4
δ2L2

1(d+ 3)3

+ L1η
2E‖g̃b(x0)‖2 + 2L1η

2
T−1∑
t=0

‖∇f(xt)‖2 + L1η
2Tβ.

Choosing ζ from 0, ..., T − 1 uniformly at random, we
obtain from the above inequality that

(1

2
− 2L1η

)
E‖∇f(xζ)‖2 ≤

f(x0)− infx f(x)

ηT
+
δ2L1d

ηT

+
L2
1

4
δ2(d+ 3)3 +

L1ηE‖g̃b(x0)‖2

T
+ L1ηβ,

which, in conjunction with η = 1
4(d+2)4/3

√
T max(L0,L1)

<

1
8L1

, δ = 1
(d+2)5/6T 1/4 , β = 12L2

1δ
2(d+ 6)3 +

48(d+4)σ2
g

b +

8(d+2)σ2

δ2b , b = max
(
σ2,

σ2
g√

Td5/3

)√
T and E‖g̃b(x0)‖2 ≤

MTd8/3, yields

E‖∇f(xζ)‖2 ≤ O
(d4/3√

T
+
d2/3

T
+
d4/3√
T

+
d4/3√
T

+
1

T

+
σ2
g

d1/3b
√
T

+
d4/3σ2

b

)
≤ O

(d4/3√
T

)
.

Then, to achieve an ε-accurate stationary point of
function f , i.e., E‖∇f(xζ)‖2 < ε, we need T =

O(d8/3ε−2)the total number of function query is given
by Tb ≤ O

(
σ2d4ε−3 + σ2

gdε
−2).

Smooth Convex Geometry

In this part, we provide the convergence and complexity
analysis for the proposed gradient estimator for the case
where F (x; ξ) is convex and belongs to C0,0 ∩ C1,1.

Theorem 21 Suppose Assumptions 10, 11 and 15 are
satisfied and E‖g̃b(x0)‖2 ≤ MTd2 for certain con-
stant M > 0. Choose η = 1

192(d+2)
√
T max(L0,L1)

and

δ2 = 1√
T

and b = max
( σ2

g√
T
, σ2
)√
T/d. Then, we have

E‖∇fδ(xζ)‖2 ≤ O
(

d√
T

+ d2

T

)
. Then, to achieve an ε-

accurate stationary point of f , the total function query
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complexity is given by

Tb = O
(
σ2d2ε−3 + σ2

gdε
−2).

PROOF. Using an approach similar to (H.12), we have

E‖xT − x∗‖2≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 2ηδ2L1dT +

T−1∑
t=0

η2E‖g̃b(xt)‖2,

where the last inequality follows from Equation (19)

in Nesterov & Spokoiny (2017). Let α =
6(d+2)L2

0η
2

δ2 ,

β = 12L2
1δ

2(d + 6)3 +
48(d+4)σ2

g

b + 8(d+2)σ2

δ2b and pt−1 =

24(d+4)E(‖∇f(xt)‖2+‖∇f(xt−1)‖2). Then, combining
the above inequality with (H.13) yields

E‖xT − x∗‖2 ≤ ‖x0 − x∗‖2

− 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 2ηδ2L1dT + η2E‖g̃b(x0)‖2

+

T−1∑
t=1

η2
(
αtE‖g̃b(x0)‖2 +

t−1∑
j=0

αt−1−jpj +
β(1− αt)

1− α

)
≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 2ηδ2L1dT

+ η2
1− αT

1− α
E‖g̃b(x0)‖2 + η2

T−2∑
j=0

T−2∑
t=0

αtpj + η2
T−1∑
t=1

β(1− αt)
1− α

≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 2ηδ2L1dT

+ η2
1− αT

1− α
E‖g̃b(x0)‖2 + η2

T−1∑
t=1

β(1− αt)
1− α

+ 24(d+ 4)η2
1− αT−1

1− α

T−2∑
t=0

E(‖∇f(xt+1)‖2 + ‖∇f(xt)‖2).

Recalling η = 1
192(d+2)

√
T max(L0,L1)

and δ2 = 1√
T

, we

have α < 1
2 , and thus the above inequality yields

E‖xT − x∗‖2 ≤ ‖x0 − x∗‖2 − 2η

T−1∑
t=0

E
(
f(xt)− f(x∗)

)
+ 2ηδ2L1dT + 2η2E‖g̃b(x0)‖2 + 2Tη2β

+ 48(d+ 4)η2
T−2∑
t=0

E(‖∇f(xt+1)‖2 + ‖∇f(xt)‖2).

Since the convexity implies that 1
2L1
‖∇f(x)‖2 ≤ f(x)−

f(x∗) for any x, rearranging the above inequality yields

(2− 192(d+ 4)L1η)
1

T

T−1∑
t=0

E(f(xt)− f(x∗))

≤ ‖x0 − x
∗‖2

ηT
+ 2δ2L1d+

2ηE‖g̃b(x0)‖2

T

+ 24ηL2
1δ

2(d+ 6)3 +
96η(d+ 4)σ2

g

b
+

16η(d+ 2)σ2

δ2b
,

which, in conjunction with E‖g̃b(x0)‖2 ≤Md2T for cer-

tain constant M > 0, b = max
( σ2

g√
T
, σ2
)√
T/d and re-

calling that ζ is chosen from 0, ..., T − 1 uniformly at
random, yields

E(f(xζ)− f(x∗)) ≤ O
( d√

T
+
d2

T

)
.

Then, to achieve an ε-accurate solution, i.e., E(f(xζ)−
f(x∗)) ≤ ε, we need T = O(d2ε−2), and thus the corre-
sponding query complexity is given by

Tb ≤ O(σ2d2ε−3 + σ2
gdε
−2).
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