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Abstract— We consider the problem of cooperative beam-
forming in relay networks. Assuming knowledge of the second-
order statistics of channel state information (CSI), the opti-
mal beamforming weights are determined so that the total
transmitted power at the relays is minimized, while meeting
signal-to-interference-plus-noise-ratio (SINR) requirements at
the destinations. Our formulation utilizes the Semidefinite
Relaxation (SDR) technique to produce an efficient, tractable
convex programming approximation of the problem in central-
ized form. We propose a distributed optimization algorithm to
calculate the optimal beamforming weights for scenarios where
multiple clusters of source-destination node pairs, along with
their dedicated relays, coexist in space. Our method relies on
dual decomposition techniques with regularization, that can
significantly improve on the inherent disadvantages of simple
dual subgradient methods. Numerical anaysis demonstrates that
the proposed algorithm exhibits very fast convergence rates.

I. INTRODUCTION

Cooperative relay beamforming [1]–[5] is a rapidly emerg-
ing area of interest in the field of multiantenna smart signal-
ing strategies, due to its potential to provide energy efficiency
and communication reliability in long distance transmissions,
where signal fading is a limiting factor. Traditionally, mul-
tihop schemes have been utilized to address such scenarios.
However real-time transmissions over multiple hops suffer
from packet collisions and interference, thus introducing long
delays, especially so for ad hoc networks [6].

A preferred solution to these issues is relay beamforming,
wherein a set of relay nodes cooperate to form a ”virtual
antenna array” that retransmits signals from sources to des-
tinations. The main idea behind this technique is to exploit
constructive interference effects, by forming beampatterns
that focus on the destinations’ locations. This results in
increased directional channel gain [7, 8] and enables long
distance transmissions with lower power and fewer hops,
minimizing thus interference [6, 9]. In this paper, we focus
on the very popular Amplify-and-Forward (AF) relaying pro-
tocol, due to its low complexity and implementation cost [4].
In AF the relay antennas retransmit an amplified and phase-
steered version of the received source signals, by multiplying
them with appropriate, optimal weights (linear precoders).
The optimality criterion to determine these weights typically
involves minimizing the total transmitted power at the relays,
subject to satisfying desirable SINR levels at all destinations.

This work is partially supported by NSF under grants CNS#1239339,
CNS#1239188.

Nikolaos Chatzipanagiotis and Michael M. Zavlanos are with the Dept. of
Mechanical Engineering and Materials Science, Duke University, Durham,
NC, 27708, USA {n.chatzip,michael.zavlanos}@duke.edu.
Athina Petropulu is with the Dept. of Electrical and Computer Engineering,
Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
athinap@rutgers.edu.

Beamforming algorithms require access to channel state
information (CSI), upon which the calculation of the optimal
beamforming weights is based. Thus, centralized optimiza-
tion methods, which involve a central processing unit that
collects the global CSI information and then transmits the
optimal weights to all beamformers, incur a large com-
munication cost. They also entail significant delays and
are vulnerable to failures, giving rise to the need for dis-
tributed techniques, where each beamformer must calculate
its optimal weights based on local information only. In
this paper, we consider scenarios where multiple clusters of
source-destination pairs, along with their dedicated relays,
coexist in space. We propose a novel distributed optimization
algorithm, which allows for autonomous computation of the
beamforming decisions by each cluster, while taking into
account intra- and inter-cluster interference effects.

Our algorithm utilizes augmented Lagrangians (AL),
a regularization technique that is obtained by adding a
quadratic penalty term to the ordinary Lagrangian [10, 11].
AL methods converge very fast, especially compared to first
order methods, however they lack the decomposability prop-
erties of the ordinary Lagrangian, utilized in the well known
dual decomposition method [11]. Nevertheless, simple dual
decomposition methods suffer from slow convergence rates
and require strict convexity of the objective function [10]–
[12]. The later strict convexity requirement prohibits applica-
tion of such techniques to the problem under consideration,
as the proposed objective function is linear. In this paper, we
employ the Accelerated Distributed Augmented Lagrangians
(ADAL) algorithm that we recently proposed in [13]. ADAL
is a novel AL decomposition method that enjoys very fast
convergence rates, as suggested by numerical simulations.
Alternative AL decomposition techniques for general convex
optimization problems can be found in [14]–[18]. In relevant
beamforming literature, distributed methods for the multi-
cell downlink beamforming problem have been proposed in
[19], utilizing the dual decomposition method, and also in
[20], where an AL method is used, namely the Alternating
Directions Method of Multipliers (ADMM). To the best of
the authors knowledge, distributed algorithms for the case of
multi-cluster relay beamforming, as discussed here, have not
been proposed.

The rest of the paper is organized as follows: In Sec-
tion II, we discuss the multi-cluster network beamforming
problem and formulate it as a convex optimization problem.
In Section III, we propose a distributed algorithm to solve
the aforementioned problem based on ADAL. Finally, in
Section IV, we present numerical results to verify the validity
of our approach.
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Fig. 1. A N = 2 multi-cluster relay beamforming scenario, with M =
2 source-destination pairs (green and blue dots respectively) and L = 3
dedicated relays (red dots) for each cluster.

II. COOPERATIVE RELAY BEAMFORMING

Consider a scenario where a set N = {1, . . . , N} of
clusters coexist in space, where each cluster Cn,∀n ∈ N is
composed of a set Mn = {1, . . . ,M} of, single antenna,
source-destination pairs and a set Ln = {1, . . . , L} of
dedicated relays. We denote the m-th user (destination) of
the n-th cluster as Unm, ∀n ∈ N ,m ∈ Mn the respective
source as Snm and the relays as Rnl, ∀n ∈ N , l ∈ Ln. A
simple case is depicted in Fig. 1. Note that we assume for
simplicity of notation, and without loss of generality, that
all clusters contain the same number of source destination
pairs M and relays L. We consider cases where the direct
communication links between source-destination pairs are of
prohibitively low quality, i.e. the channel gains are negligible,
such that utilization of the relays is justifiable. The received
signal at every relay Rnl is given by

xnl =
√
P0

∑
j∈N

∑
m∈Mj

fjm,nlsjm + vnl,

where C denotes the complex line, P0 is the common
transmit power of all sources and snm ∈ C denotes the,
normalized to unit power, information symbol transmitted
by source Snm. Also, vnl ∈ C is the noise at relay Rnl
modeled as i.i.d. circularly symmetric, complex Gaussian
random variable with unit variance, i.e. vnl ∼ CN (0, 1) and
fjm,nl denotes the channel gain between source Sjm and
relay Rnl. The received signal vector at all relays of cluster
Cn is

xn =
∑

j∈N

√
P0Fjnsj + vn,

where sj = [sj1, . . . , sjM ] ∈ CM , xn = [xn1, . . . , xnL]T ∈
CL, vn = [vn1, . . . , vnL]T ∈ CL. The matrix Fjn ∈ CL×M
is defined as the channel state matrix containing the channels
from all sources of Cj to all the relays of Cn, i.e.

Fjn =

 fj1,n1 . . . fjM,n1

...
. . .

...
fj1,nL . . . fjM,nL

 =
[
fj1,n . . . fjM,n

]
,

where fjm,n = [fjm,n1, . . . , fjm,nL]T ∈ CL denotes the
channel gain vector from source Sjm to all relays of cluster
Cn. During the second communication stage the relays of

cluster Cn retransmit, in an AF fashion, a linear transforma-
tion of xn, i.e.

tn = Wnxn =
√
P0Wn

(∑
j∈N

Fjnsj
)

+ Wnvn,

where tn ∈ CL denotes the forwarded signal vector and
Wn ∈ CL×L is the corresponding beamforming matrix. In
this paper, we consider the case where every relay node car-
ries a single antenna, which translates into the beamforming
matrix being diagonal, i.e. Wn = diag{wn1, . . . , wnL} ∈
CL×L , where wnl denotes the complex weight with which
relay Rnl multiplies its received signal. These beamforming
decisions of the relays of each cluster must also take into
account interference effects at the intended users caused
by the other clusters’ operation. Then, the received signal
vectors yn ∈ CM at all users of each cluster Cn will be

yn =
∑
j∈N

(√
P0GjnWj

(∑
i∈N

Fijsi
)

+ GjnWjvj

)
+ zn,

where zn = [zn1, . . . , znM ]T ∈ CM denotes the vector of
i.i.d random noise components znm ∼ CN (0, 1) at user Unm.
The matrix Gjn ∈ CM×L is defined as the channel state
matrix containing the channels from all relays of Cj to all
the users of Cn, i.e.

Gjn =

 gj1,n1 . . . gjL,n1
...

. . .
...

gj1,nM . . . gjL,nM

 =
[
gTj,n1 . . . gTj,nM

]T
with gj,nm = [gj1,nm, . . . , gjL,nm]T ∈ CL denoting the
channel gain column vector from all relays of Cj to Unm.
More specifically, the received signal at user Unm is com-
prised of

ynm =
∑

j∈N
gTj,nmtj + znm

=

Desired︷ ︸︸ ︷√
P0g

T
n,nmWnfnm,nsnm +

Noise︷︸︸︷
znm

+

Intra-Cluster Interference from same cluster’s sources other than Snm︷ ︸︸ ︷
gTn,nmWn

(∑i6=m

i∈Mn

√
P0fni,nsni + vn

)

+

Intra-Cluster Interference from other clusters’ sources︷ ︸︸ ︷
gTn,nmWn

(∑j 6=n

j∈N

√
P0Fjnsj

)

+

Inter-Cluster Interference︷ ︸︸ ︷∑j 6=n

j∈N
gTj,nmWj

(∑
i∈N

√
P0Fijsi + vj

)
Subsequently, the SINR of user Unm is given by

SINRnm = E
(
P0|gTn,nmWnfnm,nsnm|2

)
/

E
(
P0

i 6=m∑
i∈Mn

|gTn,nmWnfni,nsni|2 +
∑
j∈N
|gTj,nmWjvj |2

+ P0

∑j 6=n

j∈N

∑
k∈Mj

|gTn,nmWnfjk,nsjk|2

+ P0

j 6=n∑
j∈N

∑
i∈N

∑
k∈Mi

|gTj,nmWjfik,jsik|2 + |znm|2
)



with E(·) denoting expectation with respect to time. As al-
ready mentioned, a reasonable optimality criterion, according
to which we calculate the optimal beamforming weights,
involves minimizing the total transmitted power at the re-
lays, subject to satisfying user-specific SINR lower bounds
γnm > 0. Thus, the multi-cluster beamforming problem
entails finding Wn that solve the optimization problem

min{Wn}n∈N
∑

n∈N
PnT (Wn) (1)

s.t. SINRnm(Wn) ≥ γnm, ∀n ∈ N , m ∈Mn

where the average, total transmited power at the relays
of cluster Cn is calculated as PnT = E{‖tn‖2F } =∑
j∈N Tr

(
P0WnE{FjnFHjn}WH

n

)
+ Tr

(
WnW

H
n

)
,

with ‖ · ‖F denoting the Frobenius norm. In this
paper, we assume that every relay node carries a
single antenna, which translates to every Wn being a
diagonal matrix. This enables us to express the total
transmit power of Cn as PnT = wHnR

n
Twn, where

wn =
[
wn1, . . . , wnL

]T ∈ CL is a column vector
containing all the diagonal elements of Wn, and Rn

T = IL+

P0

∑
j∈N

∑
m∈Mj

diag
{
E{|fjm,n1|2}, . . . ,E{|fjm,nL|2}

}
,

with IL denoting the identity matrix of size L. Additionally,
we define ∀n ∈ N ,m ∈ Mn the desired signal matrices
as Rnm

S = E{(fTnm,n � gTn,nm)H(fTnm,n � gTn,nm)},
where � denotes the Hadamard (entrywise) product.
The intra-cluster interference matrices are Rnm

I =∑i 6=m
i∈Mn

E{(fTni,n � gTn,nm)H(fTni,n � gTn,nm)} +∑j 6=n
j∈N

∑
k∈Mj

E{(fTjk,n � gTn,nm)H(fTjk,n � gTn,nm)}.
The inter-cluster interference matrices ∀j ∈ N\{n} are
Rj,nm
IC =

∑
i∈N

∑
k∈Mi

E{(fTik,j�gTj,nm)H(fTik,j�gTj,nm)}
and, finally, the noise matrices are Rj,nm

v =
diag

{
E{|gj1,nm|2}, . . . ,E{|gjL,nm|2}

}
. Using this notation,

the SINRnm is expressed as

SINRnm =
(
P0w

H
nR

nm
S wn

)
/
(
P0w

H
nR

nm
I wn +

+P0

∑j 6=n
j∈N wHj R

j,nm
IC wHj +

∑
i∈N wHi R

i,nm
v wi + 1

)
Then, problem (1) can be equivalently written as

min
{wn},n∈N

∑
n∈N

wHn R
n
Twn

s.t. wHnQ
nnmwn +

∑j 6=n

j∈N
wHj Q

jnmwj ≥ 1,

∀n ∈ N , m ∈Mn, (2)

where we have further defined the matrices Qnnm =
P0

γnm
Rnm
S − P0R

nm
I − Rn,nm

v and Qjnm = −P0R
j,nm
IC −

Rj,nm
v . The matrices Qijk are Hermitian, as the sums of

Hermitian matrices, and will be, in general, indefinite. This
means that the optimization problem (2) belongs in the
class of nonconvex Quadratically Constrained Quadratic Pro-
gramming (QCQP) problems, which are NP-hard to solve.
Nevertheless, by defining the variable Xn , wnw

H
n [21]

we can express (2) in the equivalent form:

min{Xn},n∈N
∑

n∈N
Tr(XnR

n
T ) (3)

s.t. Tr(XnQ
nnm) +

∑j 6=n

j∈N
Tr(XjQ

jnm) ≥ 1,

Xn ∈ SL+, ∀n ∈ N , m ∈Mn,

rank(Xn) = 1, ∀n ∈ N

where Xn ∈ SL+ imposes the (convex) constraint that matrix
Xn belongs to the cone of symmetric, positive semidefinite
matrices of dimension L. Problem (3) is equivalent to (2) and
still nonconvex because of the nonconvex rank constraint.
Utilizing the so-called Semidefinite Relaxation (SDR) tech-
nique [21], we can drop the rank constraints (thus enlarging
the feasible set) in (3) and solve:

min{Xn},n∈N
∑

n∈N
Tr(XnR

n
T ) (4)

s.t. Tr(XnQ
nnm) +

∑j 6=n

j∈N
Tr(XjQ

jnm) ≥ 1,

Xn ∈ SL+, ∀n ∈ N , m ∈Mn,

at the cost of obtaining, possibly, suboptimal solutions. The
advantage of (4) is that it is a semidefinite programming
problem and can be efficiently solved by interior point
methods. Due to the relaxation, the optimizer X∗n of (4) will
not be rank one in general. If it is, then it will be the optimal
solution to the original problem (3). If not, randomization
techniques [22] can be employed to obtain a rank one matrix.

Remark 1 Observe that, similar to [2]–[5], we assume
knowledge of the second order statistics of CSI, which in a
practical setting can be obtained based on past observations.
Also, we define the SINR as the ratio of the expected values,
which is different than the expected value of the ratio. This
definition is frequently used in communications textbooks,
e.g. [23] and in published works related to the problem
considered here [2]–[5]. A scenario with perfect channel
knowledge would express the constraints with respect to
instantaneous SINRs, however this consideration lacks in
terms of practical applicability.

III. DISTRIBUTED OPTIMIZATION

Dual subgradient methods that exploit the separability of
the ordinary Lagrangian are simple and attractive, however,
they are not suitable for the problem under consideration,
since they require strict convexity of the objective function
and also suffer from very slow convergence rates. This
motivates alternative methods that take advantage of reg-
ularization techniques, such as the augmented Lagrangian
Method (ALM) [10, 11], which we briefly present in what
follows.

As our distributed version of ALM is developed for
affine equality constraints, we define auxilliary variables
ζnjm,∀n, j ∈ N ,m ∈ Mn that express the amount of
’influence’ (meaning either the desired signal power or
interference) exerted by all the relays of cluster Cn on user



Algorithm 1 Augmented Lagrangian Method
Require: Set iteration counter k = 1 and define initial

Lagrange multipliers λ1.
1: For fixed Lagrange multipliers λk, find primal variables

Xk
n, ζ

k
n that solve the problem:

{Xk, ζk} = arg minX,ζ Λ(X, ζ,λk) (8)

s.t. Xn ∈ SL+, ζn ∈ Zn, ∀ n ∈ N

2: If the constraints
∑
n∈N ζ

k
n = 0 are satisfied, then stop

(optimal solution found). Otherwise, set :

λk+1 = λk + ρ
∑

n∈N
ζkn (9)

increase k by one and return to Step 1.

Ujm, i.e.

ζnnm = Tr(XnQ
nnm)− 1, ∀m ∈Mn (5)

ζnjm = Tr(XnQ
njm), ∀ j ∈ N\{n}, m ∈Mj

Furthermore, define the vector ζn = [ζn11, . . . , ζnNM ]T ∈
RNM stacking all the ’influences’ of Cn. Now, note that the
inequality constraints in (4) must be active at the optimal
solution (satisfied as equalities), because if they were not
we would be able to decrease the magnitudes of Xn further,
thus invalidating the optimality assumption. Then, problem
(4) can be equivalently written as

min{Xn},n∈N
∑

n∈N
Tr(XnR

n
T ) (6)

s.t.
∑

n∈N
ζn = 0

ζnnm = Tr(XnQ
nnm)− 1, ∀n ∈ N m ∈Mn

ζnjm = Tr(XnQ
njm),∀n ∈ N , j ∈ N\{n},m ∈Mj

Xn ∈ SL+, ∀n ∈ N

where 0 is the zero vector of dimension NM . The aug-
mented Lagrangian associated with (6) is

Λ(X, ζ,λ) =

Ordinary Lagrangian︷ ︸︸ ︷∑
n∈N

Tr(XnR
n
T ) + λT

∑
n∈N

ζn

+

Penalty term︷ ︸︸ ︷
ρ

2
‖
∑

n∈N
ζn‖22 (7)

where λ = [λ11, . . . , λNM ]T ∈ RNM is the vector of
Lagrange multipliers (dual variables), X = {X1, . . . ,XN}
and ζ = {ζ1, . . . , ζN} denote the collection of all primal and
auxiliary variables respectively and ρ ∈ R+ is a properly
defined penalty coefficient. Note that we include only the
constraint

∑
n∈N ζn = 0 in (7), because the rest of the

constraints are local at each cluster Cn and, hence, are
not included in the AL. In what follows, for simplicity of
notation, we collectively denote the set of points satisfying
the local constraints of each cluster Cn as

Zn = {ζn ∈ RNM | ζnnm = Tr(XnQ
nnm)− 1, ∀m ∈Mn,

ζnjm = Tr(XnQ
njm), ∀j ∈ N\{n},m ∈Mj}

Algorithm 2 Accelerated Distributed AL (ADAL)
Require: Set k = 1 and define initial Lagrange multipliers

λ1 and primal variables ζ̃
1

n.
1: For fixed λk, ζ̃

k

n calculate for all clusters Cn, n ∈ N
the ζ̂

k

n as the solution of

arg min
Xn,ζn

Λn(Xn, ζn, {ζ̃
k

j }j∈Cn ,λ
k)

s.t. Xn ∈ SL+, ζn ∈ Zn (10)

2: If
∑
n∈N ζ̃

k

n = 0, then stop (optimal solution found).
Otherwise, for n ∈ N set

ζ̃
k+1

n = ζ̃
k

n + τ(ζ̂
k

n − ζ̃
k

n) (11)

and communicate ζ̃
k+1

n to every Cj ∈ Cn.
3: For every n ∈ N and every m ∈Mn set

λk+1
nm = λknm + τρ

∑
j∈Inm

ζ̃k+1
jnm (12)

communicate λk+1
nm to every Cj ∈ Inm , increase k by

1 and go to Step 1.

Alg. 1 summarizes the centralized version of the augmented
Lagrangian method applied on our problem for reference.
For a more detailed discussion see [10, 11].

A. Accelerated Distributed Augmented Lagrangians

The ALM is an excellent general purpose method, however
(7) is not separable, due to the quadratic penalty term and the
underlying inner products 〈ζi, ζj〉 that form, when this term
is expanded. Thus, in order to obtain a distributed method,
we use the Accelerated Distributed Augmented Lagrangians
(ADAL) algorithm that we have recently proposed in [13].
Implementation of ADAL involves defining local AL for
every cluster Cn

Λn(Xn, ζn, {ζ̃j}
j 6=n
j∈N ,λ) = Tr(XnR

n
T ) + λT ζn

+
ρ

2
‖ζn +

∑j 6=n

j∈N
ζ̃j‖22

where we introduce ζ̃j , denoting the primal variables that are
controlled by Cj but communicated to Cn for optimization
of its local Lagrangian Λn . With respect to Cn, these are
considered fixed parameters. At each iteration k of ADAL,
each cluster Cn minimizes its local augmented Lagrangian

ζ̂
k

n = argmin{Xn∈SL+,ζn∈Zn} Λn(Xn, ζn, {ζ̃
k

j }
j 6=n
j∈N ,λ

k)

(13)
A key observation here is that each cluster Cn does not
actually need global information to calculate (13). Although
it appears to require access to all ζ̃j , ∀j ∈ N\{n}, one can
readily observe that

‖ζn +

j 6=n∑
j∈N

ζ̃j‖22 =
∑
i∈N

∑
m∈Mi

(
ζnim +

j 6=n∑
j∈N

ζ̃jim

)2
(14)

where we recall that ζjim denotes the ’influence’ that Cj ex-
erts on user Uim. In practical applications, each Cn will exert



non-negligible interference (above a specified threshold) on
a subset Bn ⊆ {U11, . . . , UNM} of the set of active users
and, consequently, we can set to 0 all ζnim, ∀ Uim /∈ Bn.
Correspondingly, the summation terms in (14) for users
Uim /∈ Bn that do not experience interference from the
operation of Cn are just constant terms in the optimization
step (10) and can be neglected. In other words, each Cn
only needs information from those clusters that exert non-
negligible ’influence’ on the users belonging in Bn, i.e.
Cj ∈ Cn if and only if Bj

⋂
Bn 6= ∅, where we define Cn ⊆

N as the set of clusters that constitute the communication
neighborhood of cluster Cn.

After calculating ζ̂
k

n according to (13), each cluster
Cn, ∀n ∈ N updates its estimates ζ̃n (that will be com-
municated to its neighbors Cj ∈ Cn) according to

ζ̃
k+1

n = ζ̃
k

n + τ(ζ̂
k

n − ζ̃
k

n)

where τ is a stepsize, the determination of which is critical
to the convergence properties of the method, as will be ex-
plained later on. Subsequently, the dual update is performed
according to

λk+1 = λk + τρ
∑

n∈N
ζ̃
k+1

n

The dual updates are distributed by structure. The Lagrange
multiplier λnm, corresponding to the SINR constraint of
user Unm, must be updated, at iteration k, according to
λk+1
nm = λknm + τρ

∑
j∈N ζ

k+1
jnm. This summation needs to

include influences only from those clusters that exert non-
negligible influence on Unm, i.e. the set Inm = {Cj : Unm ∈
Bj ,∀j ∈ N}. The ADAL algorithm applied on the multi-
cluster relay beamforming problem is summarized in Alg.
2.

Each SINR constraint for Unm,∀n ∈ N ,m ∈ Mn

contains variables from all clusters Cj ∈ Inm, which does
not neccessarily mean that these clusters are within range
to exchange messages with each other, as is required by the
aforementioned analysis. This fact affects both the commu-
nication pattern needed to ensure that every Cj obtains the
necessary data for its penalty term in (10) and the dual update
procedure in (12). A practical solution would be to let the
users perform the update of the corresponding dual variables
and also act as message relays in the message exchange phase
between coupled clusters.

According to the convergence analysis in [13], the stepsize
τ must be determined according to τ ≈ 2

maxnm |Inm| ,
where | · | denotes the cardinality of a set. However here,
the terms |Inm| are not static and predetermined, since
they are obviously influenced by the beamforming choices
of the clusters, which in turn are dynamically changing
throughout the iterative evolution of ADAL. A practical,
heuristic solution for this would be to start the distributed
algorithm with a rather conservative choice of τ and then
slowly, as the iterations progress and the choices ’stabilize’,
change τ by monitoring the value of maxnm |Inm|. More
attractively, if we have some reasonable knowledge of the
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Fig. 2. Spatial configuration of a multi-cluster relay beamforming scenario
with 5 clusters. The blue, green and red circles denote sources, destinations
and relays, respectively.

expected interference patterns in a given setup, we could
define τ accordingly.

IV. NUMERICAL ANALYSIS

In this section we illustrate the effectiveness of the pro-
posed distributed algorithm under various settings. We follow
a channel model encompassing large scale fading effects due
to path loss and small scale fading. Specifically, we define the
channel between two nodes k, l as hkl = αklckle

j(2π/λ)dkl ,
where αkl captures multipath fading, cklej(2π/λ)dkl captures
path loss, λ denotes the wavelength of carrier waves and dkl
denotes the Euclidean distance between nodes k and l. The
path loss coefficient is a function of distance between the
nodes given by ckl = d

−µ/2
kl , where µ = 3.4 is the path loss

exponent and represents the power fall-off rate. We do not
include large-scale shadowing effects for simplicity, however
the extension is possible. Also, we assume Rayleigh fading
such that the gains αkl ∼ CN (0, 1). Correspondingly, for the
purpose of simulations we construct the various channel ma-
trices of the general form Rkl = E[hkl(t)h

H
kl(t)] ∈ CNT×NT

by generating realizations of Rayleigh random variables and
setting Rkl = hklh

H
kl. The signal wavelength is assumed to

be λ = c/f = (3 · 108)/(2.4 · 109) = 0.125m which is a
reasonable choice for wireless transmissions utilizing ultra
high frequency carrier waves (2.4GHz).

In all the cases presented below, we have always set the
initial values of the primal and dual variables to zero in order
to minimize the influence of initialization on the convergence
behavior of the iterative distributed algorithm. The penalty
parameter ρ is in general user defined in AL methods based
on the effect it has on the behavior of each specific problem.

A typical spatial configuration of the networks considered
in simulations is depicted in Fig. 2. All destinations are
placed nearby such that the presence of interference renders
the beamforming problems non-trivial. Fig. 3 presents the
convergence results of ADAL on the scenario depicted in Fig.
2 and for various values of SINR requirements. In particular,
Fig. 3(a) demonstrates convergence of the objective function
(total transmitted power at all the relays of the system), while
in Fig. 3(b) we plot the progress of the transmitted power at
the relays of each cluster. In all cases, ADAL leads to very
fast convergence. We must also mention that the entries of the
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Fig. 3. Convergence results of ADAL: a) Total transmitted power (at
the relays) of the network scenario depicted in Fig. 2 for different SINR
requirement values of γ. and b) Individual transmitted power (at the relays)
of each cluster for the aforementioned setup and γ = 8dB. The straight
lines in both figures indicate the respective centralized solutions.
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Fig. 4. Comparative convergence results for the ADAL and ADMM
algorithms on a scenario with 12 clusters and γ = 10dB: a) Total transmitted
power at the relays and b) Constraint feasibility for

∑
n∈N ζn = 0.

beamforming matrices converge to the respective values of
the centralized solution. Moreover, these convergence results
indicate that scenarios with higher SINR requirement tend to
converge slower. This is intuitive, since for higher values
of γ the need for coordination between the beamformers
increases, in an effort to satisfy the stricter QoS requirements.

In Fig. 4, we compare ADAL with another popular
distributed AL method, namely the Alternating Directions
Method of Multipliers (ADMM) [11, 17, 24]. We can observe
that ADAL converges faster than ADMM, both in terms of
objective function convergence and constraint feasibility.

V. CONCLUSIONS

In this paper, we considered the the problem of cooperative
beamforming in relay networks, for scenarios where multiple
clusters of source-destination node pairs, along with their
dedicated relays, coexist in space. Utilizing the Semidefinite
Relaxation technique, we formulated an approximation of
the problem in convex programming form and proposed a
novel, distributed optimization algorithm that allows for au-
tonomous computation of the optimal beamforming decisions
by each cluster. The proposed approach combines low com-
putational complexity with the robustness and convergence
speed properties of regularization, while at the same time it
requires minimal communication overhead.
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