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Abstract

Gene regulatory networks capture interactions between genes and other cell substances,

resulting in various models for the fundamental biological process of transcription and trans-

lation. The expression levels of the genes are typically measured as mRNA concentration

in micro-array experiments. In a so called genetic perturbation experiment, small pertur-

bations are applied to equilibrium states and the resulting changes in expression activity

are measured. One of the most important problems in systems biology is to use these data

to identify the interaction pattern between genes in a regulatory network, especially in a

large scale network.

In this paper, we develop a novel algorithm for identifying the smallest genetic network

that explains genetic perturbation experimental data. By construction, our identification

algorithm is able to incorporate and respect any a priori knowledge known about the

network structure. A priori biological knowledge is typically qualitative, encoding whether

one gene affects another gene or not, or whether the effect is positive or negative. Our

method is based on a convex programming relaxation of the combinatorially hard problem

of L0 minimization, so it can efficiently handle large scale problems. We apply the proposed

method to the identification of a subnetwork of the SOS pathway in Escherichia coli, the

segmentation polarity network in Drosophila melanogaster, and a larger artificial network

for measuring the performance of the method. In all cases, we show that our method

performs better than prior methods.
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1 Introduction

Genes in living cells regulate various cellular biochemical processes through genetic regulatory

networks. In such a network, the genes produce (through transcription and translation) pro-

teins that act as transcription factors for other genes or themselves. Transcription factors are

proteins that upregulate or downregulate the genetic transcription activities. A gene, there-

fore, can regulate the activities of other genes by proxy. When the increase in the expression

activity of gene X results in the increase of that of gene Y, then gene X is said to activate gene

Y. On the other hand, if the expression activity of gene Y is decreased, then gene X is said to

inhibit gene Y.

Various activation and inhibition patterns in genetic circuits result in various system behaviors,

such as feedback, oscillation, and switch like behavior. When the network’s interconnection

pattern is known, it is possible to develop quantitative models that can predict its behavior.

The effectiveness of such quantitative models has been verified through experimental obser-

vation of naturally existing systems (see, for example, [20]) and the construction of various

synthetic genetic networks that function according to the design model (see, for example,

[12, 10]).

The use of RNA microarray has made it possible to have an expression profile for a large

number of genes when exposed to different conditions. One of the most important problems

in systems biology is to use these data to identify the interaction pattern between genes in

a regulatory network, especially in a large scale network. In the literature, this is sometimes

called reverse engineering the genetic network. Genetic network identification has important

potential applications, for example in drugs discovery where a systems wide understanding of

the regulatory network is crucial for identifying the targeted pathways.

Genetic network identification is a very active research field. For an overview on existing

results and methodologies, we refer the reader to [4, 16, 14, 11, 2] and the references therein.

Based on the technique, we identify two classes of methods for network identification. The

first class consists of methods that infer the network by clustering the genes based on their

expression profiles. These methods do not view the network as a dynamical system, and the

inferred network typically lacks causality information.

The second class consists of methods that infer the cause-effect relation between genes through

various representations. Several typical representations are information-theoretic network,

Bayesian network, and dynamical network described by ordinary differential equations (ODE)

(see the survey in [2]). Information-theoretic network based methods typically lack the causal-
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ity information, as they identify the network as undirected graphs. Bayesian network based

methods identify the genetic network as directed graph and thus convey some causality in-

formation. However, they typically do not accommodate cycles in the network graph. This

limitation can be significant, as feedback motifs are very common in genetic regulatory net-

works. Both causality and feedback motives limitation are not present in methods where that

model the network as the network is modelled as a set of differential equations ([13, 22, 21, 3]).

The method that we propose in this paper belongs to this class.

Based on the type of data used in the identification, there are two classes of methods. The

first class deals with data obtained from dynamic time-series measurement of the expression

profiles. The second class deals with steady state data, obtained by measuring the expression

profiles when the network reaches an equilibrium. Our method belongs to the second class,

where the identification of the interconnection pattern is done locally by perturbing the network

around a given equilibrium. It is generally known that a regulatory network can have multiple

stable equilibria.

The method that we propose aims at providing a minimal model that explains given genetic

perturbation data. Obtaining such a minimal model is computationally very hard, as it involves

combinatorial optimization problems that are known to be extremely hard to solve in large

scale. Pioneering works by Gardner et al [13] and Tegner et al [22] provided an important

step towards solving this problem. The method that they use introduces an a priori limitation

on the connectivity of the network, and perform a combinatorial search on this limited set.

The connectivity limitation is that each gene in the network has the same number of inputs.

Another different approach where the connectivity is imposed on the number of outputs is

reported in [23]. For every combination, the parameters of the model are deduced through a

least-square fitting. Similar approach that uses least-square fitting but without minimization

of the model is also reported in [1].

In solving this problem, we take a novel and different approach. Instead of imposing a con-

nectivity limitation on the network, we do not have any limit on how many inputs each gene

should have. The hard combinatorial problem is solved using a mathematical technique called

convex optimization ([7]) after relaxing it as an ℓ1 optimization problem ([6]). The same tech-

nique has been applied successfully in various fields where sparsity optimization is needed such

as, portfolio optimization in finance ([18]), controller design in engineering ([15]), and electric

power network design ([8]). Posing the problem as a convex optimization problem is actually

very advantageous from the complexity point of view, as convex optimization algorithms can

be implemented reliably to solve large scale problems.
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Compared to the existing methods of the same class, our method has an advantage of being

able to incorporate a priori knowledge about the network structure, encoding whether one

gene affects another gene or not, or whether the effect is positive or negative. The identified

model is then constructed to satisfy the a priori knowledge by default.

In this paper, we apply our method to two networks that have been previously identified in the

literature: the SOS pathway in Escherichia coli ([13]) and the segmentation polarity network

in Drosophila melanogaster ([22]). We also present a comparison between the performance

of our method and those of the above mentioned papers. We also apply our method to an

artificial network for its performance analysis.

2 Gene Network Modeling and Identification

A genetic regulatory network consisting of n genes in a genetic perturbation experiment can be

modeled as an n−dimensional dynamical systems ([13, 22]). In general, such a model assumes

the following form:
dx̂

dt
= f(x̂, u), x̂ ∈ R

n, u ∈ R
p, (1)

where x̂i ∈ R denotes the transcription activity (typically measured as mRNA concentration)

of gene i in the network, and ui is the so called transcription perturbation. In very large

networks, we can typically assume that not all genes can be perturbed in the experiment,

resulting in p ≤ n.

Such nonlinear genetic networks can have multiple stable equilibria. Each equilibrium typically

corresponds to a phenotypical state of the system. The dynamics close to a given equilibrium

xeq can be approximated by the set of linear differential equations,

dx

dt
= Ax + Bu, (2)

where x := x̂ − xeq ([21, 1]). The matrix A ∈ R
n×n encodes pairwise interactions between the

individual genes in the network at the given equilibrium or phenotypical state, while matrix

B ∈ R
n×p indicates which genes are affected by the transcriptional perturbations. Given that

the system is stable around the equilibrium x = 0, if u is small enough, the system will move

to a new equilibrium x, for which

Ax + Bu = 0. (3)

Let U = [U1 . . . Um] ∈ R
p×m denote the stack matrix of the transcription perturbations for

different m experiments and X = [X1 . . . Xm] ∈ R
n×m denote the stack matrix of the corre-
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sponding steady state mRNA concentrations. In large networks or in cases where experiments

are costly, we can typically assume that the experimental data set is smaller than the network

size ([16]). That is, we assume m < n.

By collecting all m experiments at steady state, the equilibrium conditions (3) can be written

as

AX + BU = 0. (4)

In Equation 4, the matrices X and U are known, since they are measured (possibly with

noise), and B is typically known. The goal of the method we propose in this paper is to find

unknown matrix A, which models genetic network interactions and best explains the genetic

perturbation experiments.

We aim at constructing a model that not only explains the perturbation data, but also incor-

porates some a priori knowledge about the system. Furthermore we would like to develop a

model that constitutes a minimal network.

A priori biological knowledge is typically qualitative, encoding whether one gene affects another

gene or not, or whether the effect is positive or negative. This knowledge is then manifested

as pre-specified signs of some entries of the matrix A.

We quantify the size of the model as the number of connections in the network, i.e., the number

of nonzeros entries in the matrix A. This is known as the L0 norm of the matrix A. (Even

though it is not a norm, it is common to refer to it as the L0 norm.) The minimal model then

corresponds to a network with as few connections as possible, or equivalently, the sparsest

possible matrix A.

Obtaining a minimal model is clearly beneficial, as it reduces the complexity the model. A

non-minimal model might be able to explain the data slightly better than a minimal one, for

example due to measurement noise. However, this can lead to a phenomenon called overfitting,

where a model includes unnecessary features to accommodate the noise. A minimal model is

also desirable when the identified model is used in a pathway knockout. A non-minimal model

might contain falsely identified spurious pathways.

When the available data for network identification is scarce, which is the case in large scale

networks, constraints based on a priori knowledge and minimality can supplement the available

data to obtain a good model. This is demonstrated in the segmentation polarity network of

Drosophila melanogaster that we analyze in this paper.
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3 Identification algorithm

Recall equation (4). The matrix B is known in advance, since it encodes the genes that are

perturbed in each experiment. Without any loss of generality, we can take B to be an identity

matrix of appropriate dimensions and encode the perturbation inputs in U .

In the absence of noise, a straightforward approach to this problem is to solve the linear matrix

equation AX = −U , for the unknown matrix A ∈ R
n×n. If we have a sufficient number m = n

of independent experiments, resulting in X being an invertible matrix, we could solve uniquely

for A using A = −UX−1. However, as genetic networks grow dramatically in size as we reach

genome-scale networks, having n independent experiments can be costly, both financially and

timewise. Furthermore, the absence of noise is not a realistic assumption, except when we are

dealing with in silico model. Consequently, we are not going to assume that right hand side

of (4) is zero. Instead, we define identification error as

η := AX + U, (5)

and try to minimize η (as a function of A) with respect to some metric, while obtaining a

minimal model for A and satisfying the a priori constraints that might be imposed on A.

Notations. In this paper, we use the following matrix notation. If X is a matrix with n rows

and m columns, we write X ∈ R
n×m. The symbol Xij refers to the the entry of X at the i-th

row, j-th column. A single index such as Xj refers to the column vector corresponding to the

j-th column of X. The operator E [Xj ] is the probabilistic expectation of Xj . The operator

Var [Xj ] is the covariance of Xj .

Error criterion. In this paper, we use the total squared error as the error criterion.

Err =
∑

j=1,...,m

∑

i=1,...,n

η2
ij , (6)

which can be compactly written as a Frobenius norm (‖·‖F )

Err = ‖η‖2
F . (7)

However, if the covariance of the error in the j-th experiment is known, then the sum can be

replaced by a more accurate weighted sum

Err =
∑

j=1,...,m

∑

i=1,...,n

∑

k=1,...,n

ηijηkjR
j
ik, (8)
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or in a more compact notation

Err =
∑

j=1,...,m

ηT
j Rjηj , (9)

where Rj is the inverse of the error covariance matrix in the j-th experiment. The intuition

behind this weight is that the identification error in the experiments with more reliable data

(smaller variance) weights more than that coming from less reliable data.

Model minimality criterion. We define the size of a model given by the matrix A as the

number of nonzero entries in A, which is denoted by ‖A‖0 . This is the number of connections

in the model.

A priori knowledge constraint. Such knowledge typically has the form of (partial) sign

pattern of the matrix A. We encode this by a matrix S ∈ {0, +,−, ?}n×n, where













Sij = +

Sij = −

Sij = 0

Sij =?













⇔













Aij ≥ ε

Aij ≤ −ε

− ε
2
≤ Aij ≤

ε
2

Aij ∈ R













. (10)

Here ε is a small number, below which a connection is considered negligible. In this paper,

we set ε = 10−3. In short, such a pattern encodes known positive interactions (+), negative

interactions (−), the absence of interactions (0), or simply lack of knowledge (?) between any

two genes (or other substances) in the network. For example, a matrix consisting of only (?)

indicates no a priori knowledge about the network.

Bias due to mRNA decay. The mRNA molecules produced in the transcription process

decay. In reference to (1), a model for the dynamics of the mRNA concentration that explicitly

takes into account the decay process can be written as

dx̂

dt
= f(x̂, u) − Λx̂, (11)

where f(x̂, u) denotes the part of the dynamics due to genetic regulation (activation and

repression) and Λ is a diagonal matrix that contains the decay rate of each mRNA. Obviously,

any network model that results from identification using genetic perturbation data will have

a negative bias on the diagonal terms. When the decay rates are known, which is the case

for the in silico model of the Drosophila segmentation polarity network, we can remove the

bias. Otherwise, we have to take this into account when making statements about genes

autoregulation.
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Convex programming. The method that we propose in this paper is based on a mathemat-

ical technique called convex programming. Basically, convex programming is a mathematical

theory for minimization of a convex cost function over a convex set of feasible solutions. For-

mulating the identification problem as convex programming is attractive because there are

techniques for solving convex programming problems efficiently; see, e.g., [7].

Convex function: A function f : D → R is called convex if for any x, y ∈ D and λ ∈ [0, 1], we

have the following inequality

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

Convex set: A set D is called convex if for any x, y ∈ D and λ ∈ [0, 1], (λx + (1 − λ)y) is also

included in D. It can be shown that the set of all matrices A that satisfies a given a priori

knowledge constraint S is a convex set. Hereafter, we shall denote this set as S.

Convex optimization solver. The convex optimization problems that we pose in this paper

are solved using MATLAB with the toolbox cvx (see [5]) running on an Intel Xeon 2.8Ghz

processor with 4GB RAM. cvx makes forming and solving the problem easy, but at the cost

of efficiency. However, custom made implementations of convex optimization algorithms can

easily handle problems with thousands of variables. Such efficient implementation of our

algorithm can allow us in the future to handle genome scale problems.

The method that we use in this paper is detailed in two steps.

Step 1: Establishing baseline error level

In this step, we establish the least error level that a model can attain, while disregarding the

model minimality criterion. As discussed above, when we assume no a priori knowledge about

the statistics of the error, we can simply use the total squared error as the error criterion.

Consequently, finding the baseline error level Ebs amounts to solving the following convex

programming problem

minimize
∑

j=1,...,m

∑

i=1,...,n η2
ij

subject to η = AX + U, A ∈ S,
(12)

with optimization variable A.

When the statistics of the measurement errors in each experiment for X and U are known, we

can compute the associated covariance of the error criterion as

Var [ηj ] = AVar [Xj ] A
T + Var[Uj ]. (13)
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As discussed above, the error criterion that we use is given in (9), where

Rj = (Var [ηj ])
−1 . (14)

Consequently, finding the baseline error level Ebs amounts to solving the following optimization

problem

minimize
∑

j=1,...,m ηT
j Rjηj

subject to η = AX + U, A ∈ S,

Rj =
(

AVar [Xj ] A
T + Var[Uj ]

)−1
,

(15)

where A is the variable.

However, this formulation is not convex. In order to solve it efficiently, we relax the problem

by approximating the covariance matrices. First, assuming that the covariance matrices are

identity matrices, we find the best model that minimizes the error criterion (12). Denote this

model as Ã. The weight matrices Rj are then given by

Rj =
(

ÃVar [Xj ] Ã
T + Var[Uj ]

)−1

. (16)

The baseline error level Ebs is then computed by solving the following convex optimization

problem.

minimize
∑

j=1,...,m ηT
j Rjηj

subject to η = AX + U, A ∈ S,
(17)

with A as the variable.

Step 2. Minimizing the model

The baseline error level and the approximated error covariance matrix that we obtain in Step

1 above are used in finding a minimal model that can explain the data reasonably well. That

is, we search for a minimal model that results in an error level of at most βEbs, where β ≥ 1

is a predetermined parameter. If β = 1, we are interested in models that result in the same

error level as the one obtained in Step 1. The bigger β is, the more variation we allow for the

identified model, and thereby possibly obtain a smaller model at the cost of higher error level.

Thus, β allows us to control the tradeoff between model accuracy and model minimality.
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Mathematically, Step 2 can be formulated as the following optimization problem

minimize ‖A‖0

subject to η = AX + U, A ∈ S,
∑

j=1,...,m ηT
j Rjηj ≤ βEbs,

(18)

where A is the variable. We denote the solution of this problem as Amin. Although the

constraints in the problem above defines a convex feasible set, the cost function itself is not

convex. In fact, the problem has combinatorial complexity as we have to search in the set of

all possible interconnection patterns. This means that the complexity of the problem increases

very rapidly with the its size and thus makes it practically impossible to solve it in a large

scale. In order to solve this problem with convex programming, we relax the L0 minimization

problem as a weighted ℓ1 minimization. The same technique has been applied successfully in

various fields where sparsity optimization is needed such as, portfolio optimization in finance

([18]), controller design in engineering ([15]), and electric power network design ([8]).

Step 2.1: Initiate Aold = 0 and Wij = 1, i = 1, 2, . . . , n, j = 1, 2, . . .m.

Step 2.2: Find Aupdate by solving the convex optimization problem

minimize
∑

i=1,...,n

∑

j=1,...,m Wij |Aij |

subject to η = AX + U, A ∈ S,
∑

j=1,...,m ηT
j Rjηj ≤ βEbs,

(19)

where A is the variable.

Step 2.3: Update Wij = f(Aij). Here f(Aij) is a function that assigns a weight matrix for

the convex cost function in Step 2.2. The choice for the function is explained in more detail

later.

Step 2.4: If ‖Aold − Aupdate‖F
≥ ε, then update Aold = Aupdate and go to step 2.2, otherwise

stop the iteration and return the current solution as the optimal value.

Amin = Aupdate. (20)

Here ε is a small number that we choose to indicate the convergence of the iteration. Through-

out this paper, we use ε = 10−3, unless stated otherwise.

Choosing the weight function. The weight function f(Aij) is designed such that the entries

of A that are small are given larger weight than the larger entries ([6]). This is because we

are interested in maximizing the number of zero entries in A. We thus emphasize more on
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INPUT
Perturbation

data X and U,
and a priori

knowledge S.

Begin
Noisy data with known

statistics?
yes

STEP 1.
Estimate the baseline error
level and assume that the
weight matrices R = I.j

no

STEP 2.
Perform the iteration to obtain

a minimal model.

STEP 1.
Estimate the baseline error

level and the weight matrices
R .j

End
OUTPUT
Identified
model A.

Figure 1: The flowchart summarizing the method proposed in this paper. The inputs to the
algorithm are the perturbation data represented by the matrices X and U , as well as potential
a priori structural knowledge about the network, which is represented by S. The output of
the algorithm is the identified model, represented by the matrix A.

reducing the entries that are already small. The generic form of f(Aij) that we use in this

paper is as follows.

f(Aij) =
δp

δp + |Aij |
p , (21)

where δ is a small number that acts a treshold, below which a number is considered ”small”.

The exponent p determines the shape of the function. Throughout this paper, we use δ = 10−2

and p = 1, unless stated otherwise.

The overall identification procedure can be summarized in the flowchart in Figure 1.

4 Results and discussion

4.1 The segmentation polarity network of Drosophila melanogaster

We apply our proposed method to genetic perturbation data obtained from an in numero

experiment based on the model given in [24, 22]. The network model depicts interaction

between five genes and five transcription factors, as shown in Figure 2.

The gene ci produces the Cubitus interruptus protein that further undergoes a post-translational

modification into the activator form (CI) or the repressor form (CN). Cubitus interruptus ac-

tivator acts as an activator for the genes ptc and wg, while the Cubitus interruptus repressor

represses the genes ptc, wg, en and hh. The gene wg produces the protein wingless (WG) that

in turn acts as a self-activator. The gene ptc produces the protein patched (PTC) that inhibits

the modification of Cubitus interruptus into the activator form and promotes the modification
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ci hh

ptc

wg

CI CN

PTC

EN

WG

repression
activation

transcription factor

gene

Figure 2: The segmentation polarity network of Drosophila melanogaster ([22]).

into the repressor form, effectively forming a negative feedback loop. The gene en produces the

protein engrailed (EN) that represses the transcription of ci and promotes the transcription of

hh.

We obtain the perturbation data X and U by numerically integrating the model provided in

[22]. We first simulate the model without any perturbation to obtain an equilibrium. We then

perform simulations with constant perturbation to each of the five genes in the model. The

perturbation is set at 10−3. Thus, U = 10−3 · I, where I is an identity matrix. The deviations

from the unperturbed equilibrium are recorded in the X matrix.

Since the data is noiseless, we obtain the baseline error level by solving (12). We do not

estimate any error covariance matrices, and the performance measure is thus given by (6). We

then proceed with step 2, and use β = 1.1.

From the numerical model, we have precise knowledge about the mRNA decay rate. Using

this information, we eliminate the negative (auto repression) bias in the identified network by

adding a diagonal matrix Λ (see (11)).

Given the matrix A of the identified model, we denote the strongest intergene interaction as

µ := max
i6=j

‖Aij‖. (22)

An interaction represented by Aij is considered strong if ‖Aij‖ > 0.1 · µ, and weak if 10−3 ≤
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ptc

wg
en

ci

hh

ptc

wg

(a) (b)

Figure 3: Identified network using full numerical data from the model of the segmentation
polarity network of Drosophila melanogaster. Solid lines indicate strong interaction, while
broken lines indicate weak interaction. (a) The network identified using the method proposed
in this paper. (b) The network identified in [22].

‖Aij‖ ≤ 0.1 · µ.

We execute our method to obtain a network model. The execution takes about 6 seconds

on the platform that is detailed in the previous section. Figure 3 shows the result of our

network identification method and the network identified in [22]. Our model uses the full set

of numerical data from the model, in which all five genes are perturbed separately. We can

see that our method produces a smaller model, and that all the identified connections can be

accounted for based on the explanation above. The network in [22] contains a self repression

loop in en, which is a false positive as it is not included in the real model. The connections

from ci to wg and ptc are not present in our model. As explained above, ci produces both an

activator and repressor for wg and ptc. The resulting connection is thus very weak and not

included in our model.

We also apply the method on a partial data set. In this set, we do not include the data from the

perturbation of ptc. The network identified using this data set is shown in Figure 4b. Observe

that the connections from ptc to other genes disappear as expected, since there is no data that

dictates their existence. This lack of data can be supplemented by a priori knowledge. We then

include a sign pattern matrix as a constraint. The result is shown in Figure 4a. This network

includes weak connections from ptc to itself, en, and hh as required by the constraint. These

connections are weak because their existence is required by the a priori knowledge without

any supporting data.
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en

ci

hh

ptc

wg
en

ci

hh

ptc

wg

(a) (b)

Figure 4: Identified network using partial numerical data from the model of the segmentation
polarity network of Drosophila melanogaster. Solid lines indicate strong interaction, while
broken lines indicate weak interaction. (a) The network identified when a priori knowledge
about the sign pattern is incorporated. Arrows with green dots indicate interactions that are
included in the a priori knowledge. (b) The network identified without incorporating any a
priori knowledge.

4.2 SOS pathway in Escherichia coli

We also apply our proposed method on a subnetwork of the SOS pathway in Escherichia coli,

using the genetic perturbation experimental data set provided in [13]. The subnetwork that

we consider consists of nine genes and several transcription factors and metabolites, as shown

in Figure 5 (taken from [13]).

The main pathway featured in this network is the pathway between the single-stranded DNA

(ssDNA) and the protein LexA that acts as a repressor to several other genes. The protein

RecA, which is activated by the single-stranded DNA, cleaves LexA and thus upregulates the

above mentioned genes. Other key regulators in the network are the sigma factors σ70, σ32,

and σ38. These sigma factors play an important role in initiating transcription in heat shock

and starvation responses.

We obtain the perturbation data X from [13]. Since there is no explicit mentioning of U , we

assume that it is an identity matrix. Notice that this is a justifiable assumption, as a different

value of U would just result in a scaling of the identified model.

The covariance matrix of the measurement in X is obtained by processing the standard er-

ror matrix provided in [13]. Assuming that the measurement errors of different genes are

uncorrelated, we can obtain

(Var[Xj ])ik
=

{

σ2
ij , i = k,

0, i 6= k,
(23)
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Genes recA lexA ssb recF dinI umuDC rpoD rpoH rpoS

recA ? − ? ? ? ? + ? ?
lexA + − ? ? ? ? + ? ?
ssb + − ? ? ? ? + ? ?
recF ? ? ? ? ? ? + ? +
dinI + − ? ? ? ? + ? ?

umuDC + − ? ? ? ? + ? ?
rpoD + − ? ? ? ? ? + ?
rpoH ? ? ? ? ? ? + ? ?
rpoS ? ? ? ? ? ? + ? ?

Table 1: A summary of known one-hop connections based on Figure 5. A + sign indicates
known activation, − indicates known inhibition, and ? indicates unknown connection.

where σij is the standard error of the measurement of gene i in the jth experiment. Since

there is no information about the measurement error for U , we assume it is zero.

Based on Figure 5, we can identify known one-hop connections as summarized in Table 1. We

use this table as a priori knowledge, when we perform our network identification method. We

begin with Step 1 of the method to obtain a baseline error level and estimated error covariance.

We use the estimated error covariance to obtain the weight matrices Rj that are used in the

error criterion (9). We then proceed to step 2, and use different β values obtain different

models and analyze them (as detailed below).

As comparison, we also perform the identification without estimating the error covariance and

using the weighted sum (9) as our error criterion. Instead, we use identity weight matrices.

As discussed in the previous section, this approach turns out to be inferior to the one with

estimated error covariance.

The distinction between strong and weak connections follows the same convention as in the

segmentation polarity network. An interaction represented by Aij is considered strong if

‖Aij‖ > 0.1 · µ, and weak if 10−3 ≤ ‖Aij‖ ≤ 0.1 · µ, where µ is the strongest intergenes

interaction.

The results of our method are shown in Figure 6. In panel (a), we see the network identified

using our method with estimated error covariance and β = 1.75. Recall that the parameter β

quantifies the trade-off between model minimality and model accuracy. The higher β is, the

more willing we are to trade accuracy with model minimality. Thus, higher β is expected to

lead to smaller model (fewer connections).

The network identified in [13] is shown in Figure 6 panel (b). Comparing it to our result in panel

(a), we can see that the network in (b) misidentifies several known one-hop interconnections,
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Figure 5: (Taken from [13]) Diagram of interactions in the SOS network. DNA lesions caused
by mitomycin C (MMC) (blue hexagon) are converted to single-stranded DNA during chromo-
somal replication. Upon binding to ssDNA, the RecA protein is activated (RecA*) and serves
as a coprotease for the LexA protein. The LexA protein is cleaved, thereby diminishing the
repression of genes that mediate multiple protective responses. Boxes denote genes, ellipses
denote proteins, hexagons indicate metabolites, arrows denote positive regulation, filled circles
denote negative regulation. Red emphasis denotes the primary pathway by which the network
is activated after DNA damage.
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Figure 6: Identification results of the Escherichia coli SOS network. Lines with arrows indicate
positive interaction (activation), while circles indicate negative interaction (repression). Solid
lines denote strong interaction, while dotted lines denote weak interaction. (a) The result of
our method using estimated error covariance and β = 1.75. (b) The network identified in
[13]. (c) The result of our method without error covariance estimation and β = 1.75. (d) The
result of our method using estimated error covariance and β = 2.
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Genes recA lexA ssb recF dinI umuDC rpoD rpoH rpoS

recA ? − − + + − + 0 0
lexA + − − + + − + 0 0
ssb + − − + + − + 0 0
recF 0 0 0 − 0 0 + 0 +
dinI + − − + ? − + 0 0

umuDC + − − + + − + 0 0
rpoD + − − + + − ? + 0
rpoH 0 0 0 0 0 0 + ? 0
rpoS 0 0 0 0 0 0 + 0 ?

Table 2: A summary of known interactions from the literature (taken from [13]). A + sign
indicates known activation, − indicates known inhibition, ? indicates unknown connections,
and 0 indicates no known connection. The unknown connections come from known auto-
activation, which when combined with mRNA decay results in unknown interaction.

such as the mutual repression between recA and rpoD.

The network in panel (c) is the result of our method without using error covariance estima-

tion. This leads to worse error assessment in the model. As the result, although the known

interactions are incorporated correctly in the model, we see that there are a number of false

positives, particularly the interactions leading to recF and the genes that regulate the sigma

factors rpoD, rpoH, and rpoS.

The network in panel (d) is the result of the same method that we use in panel (a), with higher

β. We can indeed see that this change in the parameter β results in a smaller model.

The network that we identify in panel (a) includes a number of interactions that are not

included in the a priori knowledge. Upon cross validation with the literature about the SOS

network, we found that some of these new interactions are valid. For example, the protein dinI

is known to stabilize recA* (cf. [19, 17]). Thereby, it effectively promotes the degradation of

the repressor protein LexA, and thus activates recA, lexA, ssb, dinI, umuDC, and rpoD. Our

result correctly predicts the positive interaction with recA, ssb, and umuDC.

A summary of known interactions in the literature has been compiled by [13] and shown in

Table 2. We use this list as the ”ground truth” and compare the results of the network

identification methods with it.

The plot in Figure 7 shows a performance comparison of various identified models. Several

observations that can be made from the comparison are:

1. Incorporating the estimated error covariance in the error assessment improves the perfor-

mance of the method. Comparing Model A and Model D, we can see that using the estimated
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Figure 7: Performance comparison of various identified models of the Escherichia coli SOS
network. Model A is the result of our method without using error covariance estimation and
β = 1.75. This network is shown in Figure 6 panel (c). Model B, C, D and E are the results
of our method using error covariance estimation, with β = 1.1, 1.25, 1.75, and 2, respectively.
Model D and E are shown in Figure 6 panel (a) and (d). Model F is the network identified in
[13], as also shown in Figure 6 panel (b).
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error covariance, we get a smaller model with fewer false positives and negatives.

2. By increasing the value of β, we emphasize more on obtaining a smaller model (fewer

connections) and less on the accuracy. Observing the results from Models B, C, D, and E, we

can see that it leads to fewer false positives and more false negatives. The model is the fewest

total error (Model D) is shown in Figure 6 panel (a).

3. The models identified using our method results in fewer errors compared to that in [13].

In particular, by tuning the value of β carefully, we can obtain models with very low number

of false positives (less than 5%).

4.3 Larger artificial networks

We generate an artificial network with 20 genes and study the performance of our method under

various noise levels and β parameter. As the measures of performance, we use the standard

notions of sensitivity, specificity, positive predictive value (PPV), and negative predictive value

(NPV) (cf. [9]). These parameters are formulated as

Sensitivity =
True Positive

True Positive + False Negative
(24a)

Specificity =
True Negative

True Negative + False Positive
(24b)

PPV =
True Positive

True Positive + False Positive
(24c)

NPV =
True Negative

True Negative + False Negative
(24d)

The sensitivity of the result tells us the fraction of existing connections in the real system

that are correctly identified as existent. The specificity of the result tells us the fraction of

nonexisting connections that are correctly identified as nonexistent. The positive predictive

value is a measure of how reliable a positive assertion (’Gene A regulates gene B’) made by the

result of test is. Similarly, the negative predictive value measures the reliability of a negative

assertion (’Gene A does not regulate gene B’).

As the true system, Atrue, we generate a random network consisting of 20 genes. The network

has 206 connections (out of 400 possible connections). We assume that 40% of these connections

are known a priori and incorporate this knowledge into our method.

The perturbation input U is taken to be the identity matrix of size 20. From (3), we know

that the true perturbation of the equilibria is given by Xtrue = −A−1
trueU .

20



0

10

20

30

40

50

60

1 2 3 4 5
Noise level (x 10%)

F
al

se
 p

o
si

ti
ve

s 
(c

o
n

n
ec

ti
o

n
s)

β=1.75

β=2

β=2.5

β=3

0

20

40

60

80

100

120

140

160

1 2 3 4 5
Noise level (x 10%)

F
al

se
 n

eg
at

iv
es

 
(c

o
n

n
ec

ti
o

n
s)

β=1.75

β=2

β=2.5

β=3

100

120

140

160

180

200

220

240

1 2 3 4 5

Noise level (x 10%)

T
o

ta
l c

o
n

n
ec

ti
o

n
s

β=1.75

β=2

β=2.5

β=3

0

2

4

6

8

10

12

14

16

1 2 3 4 5
Noise level (x 10%)

P
o

si
ti

ve
s 

w
it

h
 f

al
se

 s
ig

n
s 

(%
) β=1.75

β=2

β=2.5

β=3

Figure 8: The performance of our method on an artificial network. The noise levels (1, 2, 3, 4,
and 5) represent a noise standard deviation of 10%, 20%, 30%, 40%, and 50% the magnitude
of the measurement in X respectively. Different β values are used as indicated in the plots.
(Top-left) The number of connections in the identified models. (Top-right) Number of false
positives in the identified models. (Bottom-left) The fraction of positives with false signs.
This is computed by dividing the number of connection with false signs by the total number
of connections (Top-left panel). (Bottom-right) Number of false negatives in the identified
models.

To simulate noisy measurement, the perturbation data that we use in the network identification

is obtained by adding some Gaussian noise to Xtrue according to the following formula.

X = Xtrue + ν, (25)

where ν is a matrix of zero-mean Gaussian random variables with the following standard

deviation

σ(νij) = NoiseLevel · max(Xtrue,ij , δν), (26)

and δν is a small number that we introduce to prevent singularity of the covariance matrices.

In the simulation, we use δν = 10−2. We generate five data sets, corresponding the noise levels

of 10%, 20%, 30%, 40%, and 50%.

The performance of our method, applied to a random artificial network with 20 genes is shown
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Figure 9: Performance measures of our method on an artificial network. These measures are
computed according to (24). (Top-left) The positive predictive values of the results. (Top-
right) The negative predictive values of the results. (Bottom-left) The sensitivity of the
results. (Bottom-right) The specificity of the results.
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in Figure 8 and Figure 9. Each data point represents an identified network obtained using the

method on each of the five data sets. Each network identification takes about 9 minutes to

complete (see the previous section for details on the software and hardware that are used). In

applying our method, we assume that we have a priori knowledge about 40% of connections

and use that in the method. Generally the performance of the method drops as the noise level

increases, as expected.

As discussed earlier, the parameter β reflects how much we are willing to trade identification

error with sparsity of the identified model. A higher value of β means more emphasis put on

obtaining a sparser model. This also means that we are less likely to assign a connection in the

identified model, as shown in the top-right panel of Figure 8. As the result, we can expect that

higher β values generally lead to less false positive and more false negative (see the top-right

and bottom-right panels of Figure 8). Consequently, it also leads to higher specificity and

lower sensitivity of the identification results. This theory is confirmed by the results shown in

Figure 9.

At 10% noise level, our result demonstrates very high sensitivity, selectivity, and predictive

values (above 90% for certain β values). This is clearly better than the benchmark results

reported in the survey paper by Bansal et al [2] for other existing algorithms with the same

noise level.

From Figure 9 we can observe that although the performance of the method drops with in-

creasing noise level, the specificity of the results can be maintained at a high level (above 70%).

High level of specificity correlates with the sparsity of the model. Our method explicitly aims

to obtain the smallest model, and as the result, most of the non-existing connections can be

correctly identified.

5 Conclusion

We propose a method for identifying genetic regulatory networks using expression profiles from

genetic perturbation experiments. Two features that distinguish our method from preexisting

methods are, first, we aim at deriving a minimal model (characterized by the least number

of connections) that explains the experimental data. Second, we can incorporate any a priori

information about the structure of the network. Upon comparison with preexisting methods,

we demonstrate that our method performs better.

Our method is based on convex programming relaxation, that approaches the combinatorially

hard problem of finding a minimal model with efficient computational scheme. In this paper, we
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test our method in a prototypical implementation that handles module size networks. However,

as efficient customized implementation of convex optimization algorithms are known to handle

problems with thousands of variables, our method has a potential of solving the identification

problem on a much larger scale.
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