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Abstract

Graph matching is a fundamental problem that arises frequently in the areas of distributed control, computer vision, and facility
allocation. In this paper, we consider the optimal graph matching problem for weighted graphs, which is computationally
challenging due the combinatorial nature of the set of permutations. Contrary to optimization-based relaxations to this problem,
in this paper we develop a novel relaxation by constructing dynamical systems on the manifold of orthogonal matrices. In
particular, since permutation matrices are orthogonal matrices with nonnegative elements, we define two gradient flows in the
space of orthogonal matrices. The first minimizes the cost of weighted graph matching over orthogonal matrices, whereas the
second minimizes the distance of an orthogonal matrix from the finite set of all permutations. The combination of the two
dynamical systems converges to a permutation matrix, which provides a suboptimal solution to the weighted graph matching
problem. Finally, our approach is shown to be promising by illustrating it on nontrivial problems.
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1 Introduction

Given two graphs on the same number of nodes with
weights on edges, the weighted graph matching prob-
lem searches for an optimal permutation of nodes of one
graph so that the difference between the edge weights is
minimized. Graph matching problems arise frequently
in computer vision, facility allocation problems, as well
as distributed control.

In computer vision, matching structural descriptions of
an object to those of a model is formulated as a graph
matching problem [1–3]. In distributed control and dis-
tributed robotics, graphs are recently emerging as a nat-
ural mathematical description for capturing intercon-
nection topology [4–10]. Graph matching in this context
appears in problems involving multi-agent target assign-
ment or formation stabilization [11–13]. Finally, in fa-
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cility allocation, graph matching is similar to the well
known Quadratic Assignment Problem [14,15].

In addition to its frequent appearance in various fields,
weighted graph matching has also received a lot of at-
tention due to its hardness. Since, it includes as a special
case the largest common subgraph problem [3], which
is NP-hard [16], it is also NP-hard. In particular, by its
similarity to the quadratic assignment problem, prob-
lems with 20-25 nodes are considered very hard, and
problems with more than 30 nodes are practically in-
tractable [15]. Hence, many relaxations to the problem
have been proposed [1–3, 14, 15]. In [1] the authors pro-
pose a spectral approach to the optimal matching prob-
lem. They consider weighted graphs with the same num-
ber of nodes and employ an analytic approach by us-
ing the eigenstructure of adjacency matrices (undirected
graph matching) or some hermitian matrices derived
from the adjacency matrices (directed graph matching).
An almost optimal matching can be found when the
graphs are sufficiently close to each other. In [2] the au-
thors propose a Lagrangian Relaxation Network for the
same problem. They formulate the permutation matrix
constraints in the framework of deterministic annealing
and achieve exact constraint satisfaction at each tem-
perature within deterministic annealing. Recently, semi-
definite programming relaxations for the quadratic as-
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signment problem have also been proposed [14,15]. Such
approaches typically aim at generating bounds that can
be used in exact algorithms, such as branch and bound.

Since permutation matrices live in the intersection of the
non-convex space of orthogonal matrices and the space
of elementwise non-negative matrices, relaxing the non-
convex orthogonality constraint consists a natural ap-
proximation to the problem. This relaxation is employed
by most of the above optimization-based approaches. In
this paper, we take the opposite approach, and relax the
non-negativity constraint by defining dynamical systems
that are, by construction, guaranteed to evolve on the
manifold of orthogonal matrices. In particular, we con-
struct two gradient flows, one that minimizes the cost of
weighted graph matching over orthogonal matrices, and
a second that minimizes the distance of an orthogonal
matrix from the set of permutations. The combination
of the two dynamical systems converges to a permuta-
tion matrix, which provides a suboptimal solution to the
weighted graph matching problem. In the spirit of ana-
log solutions to combinatorial problems, our approach is
inspired by the so-called isospectral double-bracket dy-
namical system that sorts lists and solves various combi-
natorial problems [17,18] (see also [19–21]). We illustrate
our approach in examples involving more than 50 nodes,
which are considered practically intractable, and also
challenging for semi-definite relaxations using standard-
ized optimization packages. This shows that our method
is very promising. We also argue that, for applications
where mobility is critical, such as distributed robotics,
our approach is also more natural.

The paper is organized as follows. In Section 2, we de-
velop the graph theoretic framework for our problem and
illustrate the relaxation that motivates our dynamical
systems approach. In Section 3, we derive in detail the
two gradient flows, characterize their equilibrium points
and discuss how to combine them in order to get a so-
lution to the graph matching problem. Finally, Section
4 illustrates our approach in large matching problems,
and discusses initialization issues for our method.

2 Graph Matching

2.1 Problem Formulation

Let G = (V, E) be a weighted undirected graph with
vertices V = {v1, . . . , vn} and edges in the set E . We
define the weighted adjacency matrix of the graph G to
be the matrix A = (aij), such that aij > 0 if (vi, vj) ∈ E
and aij = 0 otherwise. Since we do not allow self-loops,
we define aii = 0 for all i ∈ {1, 2, . . . , n}. Moreover, since
G is an undirected graph, A is a symmetric matrix.

Consider, now, two weighted undirected graphs G1 =
(V1, E1) and G2 = (V2, E2), as before, with |V1| = |V2| =

A1

min ‖A1 − P
T
A2P‖2

F
P ∈ Pn

A2

{P T
A2P | P ∈ Pn}

Fig. 1. Problem Formulation

n and let A1 =
(
a
(1)
ij

)
and A2 =

(
a
(2)
ij

)
be their cor-

responding weighted adjacency matrices. Consider, fur-
ther, the set Sn of all permutations of the positive in-
tegers {1, 2, . . . , n}. Then, the graph matching problem
consists of finding a permutation π? ∈ Sn such that

π? = arg min
π

∑

i,j

(
a
(1)
π(i)π(j) − a

(2)
ij

)2
.

We define a permutation matrix P as follows.

Definition 1 (Permutation Matrix) An n × n ma-
trix P = (pij) is a permutation matrix if pij ∈ {0, 1} and

1.
∑n

i=1 pij = 1 for all j = 1, . . . , n.
2.

∑n
j=1 pij = 1 for all i = 1, . . . , n.

Let Pn denote the set of all permutation matrices of
size n × n. Since the sets Sn and Pn are into one-to-
one correspondence, the graph matching problem can be
reformulated as (Figure 1)

min ‖A1 − PT A2P‖2F
s.t. P ∈ Pn

, (1)

where ‖ · ‖F denotes the Frobenius norm defined as,
‖X‖F =

(
tr(XXT )

)1/2, for X ∈ Rn×n. A class of
graphs that often appear in the context of graph match-
ing are the so called isomorphic graphs. More formally,
let vi ∼ vj denote adjacent vertices in a graph G, namely
vertices such that the edge (vi, vj) belongs to the edge
set of G. Then, we have the following definition.

Definition 2 (Isomorphic Graphs) Two graphs G1

and G2 are isomorphic if there exists a bijection ϕ from V1

to V2 such that vi ∼ vj in G1 if and only if ϕ(vi) ∼ ϕ(vj)
in G2.

Clearly, all isomorphic graphs have the same structure,
since one results from another by a simple relabelling of
vertices. The following lemma will help us connect the
notion of isomorphic graphs to that of a permutation
matrix.

Lemma 3 ( [22]) Let G1,G2 be graphs on the same ver-
tex set. Then, they are isomorphic if and only if there is
a permutation matrix P such that A2 = PT A1P , where
Ai denotes the adjacency matrix of the graph Gi.
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Note that the existence of a permutation matrix P in
Lemma 3, does not necessarily imply that it is also the
unique orthogonal matrix satisfying the condition A2 =
PT A1P . To see this, suppose that G1 and G2 are isomor-
phic. Let λ1 > λ2 > · · · > λn be the eigenvalues of A1

and A2 (since A2 = PT A1P is a similarity transforma-
tion, A1 and A2 have the same eigenvalues) and A1 =
UΛUT and A2 = V ΛV T be their corresponding eigende-
compositions, with U and V orthogonal matrices. Then,
A2 = PT A1P implies that V ΛV T = PT UΛUT P and
hence, V = PT US or equivalently P = USV T , where
S = diag(±1, . . . ,±1). Clearly, P is orthogonal, but not
necessarily a permutation matrix.

2.2 Problem Reformulation

In the spirit of subsection 2.1, given any two, in general,
not isomorphic graphs, our goal is to find a permutation
matrix that minimizes the objective function in (1). The
following result provides a lower bound on the value that
‖A1 − PT A2P‖2F can attain.

Theorem 4 ( [1]) Let A1 and A2 be n × n symmetric
matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and
µ1 ≥ µ2 ≥ · · · ≥ µn respectively. Then, ‖A1 − A2‖2F ≥∑n

i=1(λi − µi)2

Since A2 and PT A2P have the same eigenvalues for any
orthogonal matrix P , Theorem 4 implies that, ‖A1 −
PT A2P‖2F ≥ ∑n

i=1(λi − µi)2. This general form of the
weighted graph matching problem does not have an an-
alytic solution. Relaxations critically rely on the struc-
ture of permutation matrices being on the intersection of
orthogonal matrices and elementwise non-negative ma-
trices [23]. The following lemma provides this equivalent
representation of the set of permutation matrices, and
gives rise to the relaxation that we will adopt in our
analysis.

Lemma 5 Let On denote the set of n × n orthogonal
matrices and Nn denote the set of n × n elementwise
non-negative matrices. Then, Pn = On ∩ Nn, where Pn

is the set of n× n permutation matrices.

Proof: Let P = (pij) be such that P ∈ Pn. Then, clearly
P is orthogonal and its elements are non-negative.
Hence, P ∈ On ∩Nn which implies that Pn ⊆ On ∩Nn.
Now, let P ∈ On∩Nn. Since P is orthogonal (PPT = I),
for all i 6= j we have

∑n
k=1 pikpjk = 0. Moreover, since

P is elementwise non-negative, we have that pikpjk = 0
for all i < j. Let m be the first index such that pmk > 0.
Then, pjk = 0 for all j > m. Since

∑n
i=1 p2

ik = 1 we
conclude that pmk = 1 and pjk = 0 for all j 6= m.
Repeating the same procedure for all the columns of
P (k = 1, . . . , n) we get that every column of P has
exactly one entry equal to 1 and the rest n − 1 entries
equal to 0. Since, the rows of P also form vectors of unit

magnitude, P must be a permutation matrix. Hence,
Pn ⊇ On ∩Nn which completes the proof. 2

Lemma 5 implies that if we restrict P to be orthogonal
and elementwise non-negative, we get a permutation ma-
trix. Using this result, as well as the fact that P has to be
orthogonal (i.e., PT P = PPT = I), we get an equiva-
lent representation for the graph matching problem (1),

min ‖PA1 −A2P‖2F
s.t. P ∈ On ∩Nn

(2)

Clearly, the objective function is convex, since (PA1 −
A2P ) is affine in P and the Frobenious norm ‖ · ‖2F is
convex. Moreover, the set Nn is also convex. However,
the set of orthogonal matrices On is not convex and so
we can not use the already available tools from convex
optimization to solve this problem. Various approaches
have been proposed in the literature that, most of the
times, relax the non-convex constraint that P ∈ On and,
hence, solve a convex problem to get an approximate
solution from which a permutation matrix is finally ex-
tracted [15]. In this paper, we follow a different approach.
In particular we are interested in the following problem.

Problem 6 Derive a matrix differential equation
Ṗ (t) = fA1,A2(P (t)), with P (t) ∈ On for all t ≥ 0, that
converges to a limit limt→∞ P (t) = P∞ such that

1. P∞ minimizes the objective function.
2. P∞ ∈ On ∩Nn.

It is clear from the above problem formulation that P (t)
does not need to belong to the set On ∩Nn for all time.
However, the limit P∞ has to satisfy both conditions of
the problem. Such an approach is more flexible and we
will show that it also gives good numerical results.

3 Gradient Flows on On

In this section we construct two differential equations
that respectively satisfy conditions 1 and 2 of Problem
6, and show how to combine them in order to get the
sought behavior. We construct these differential equa-
tions by defining a gradient flow on the space of orthog-
onal matrices for an appropriately chosen cost function
V : On → R, as in [17–21]. In particular, we param-
eterize the neighborhood of the orthogonal matrix P
as P (Ω) = P (I + Ω + Ω2/2! + . . . ), where Ω is skew-
symmetric, i.e., ΩT = −Ω. Then, the first order approx-
imation of the cost function V in a neighborhood of P
becomes

V (P (I + Ω)) ≈ V (P ) + tr
(FV (P )T Ω

)
,
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where FV (P ) is a skew-symmetric matrix function of
P . 1 Define, further, the standard metric on On by the
matrix inner product 〈A,B〉 = tr(AT B) (on the spe-
cial orthogonal group SO(n), this is proportional to the
Killing form). Then, the quantity 〈FV (P )T , ·〉 represents
the negative gradient of the function V at P . 2 Using
Ṗ = PΩ we can express the gradient flow as

PT Ṗ = FV (P )T .

The following, well known, result guarantees that any
P (t) that satisfies the previous matrix differential equa-
tion, will be orthogonal for all t ≥ 0.

Lemma 7 Let Ω(t) be skew-symmetric for all t ≥ 0 and
define the matrix differential equation Ṗ (t) = P (t)Ω(t).
Then, P (t) ∈ On for all t ≥ 0 if P (0) ∈ On.

Proof: We have, d
dt

(
P (t)P (t)T

)
= Ṗ (t)P (t)T +

P (t)Ṗ (t)T = P (t)Ω(t)P (t)T − P (t)Ω(t)P (t)T = 0.
Hence, P (t)P (t)T = const. for all t ≥ 0 and since
P (0)P (0)T = I we conclude that P (t)P (t)T = I for all
t ≥ 0, i.e., P (t) ∈ On for all t ≥ 0. 2

In the rest of this section we provide the gradient flow
for the objective function and for a cost function we in-
troduce in order to penalize negative entries in the or-
thogonal matrix P . Finally, we show that by superim-
posing these gradient flows we get a solution to the graph
matching problem that is as “close” as we want to a per-
mutation matrix.

3.1 Minimizing the Objective Function

Let V1 : On → R be defined by

V1(P ) =
1
2
‖PA1 −A2P‖2F . (3)

The following proposition describes an algorithm that
minimizes this function.

Proposition 8 (Adopted from [17]) Assuming the
standard metric on the orthogonal group, the gradient
flow of the function V1 : On → R is given by,

Ṗ = P
(
PT A2PA1 −A1P

T A2P
)
. (4)

1 For any matrix FV (P ), note that tr
`FV (P )T Ω

´
=

1
2
tr
`
(FV (P )T − FV (P ))Ω

´
, where (FV (P )T − FV (P )) is

skew-symmetric. This follows from the fact that skew-
symmetric and symmetric matrices consist an orthogonal
decomposition of the set of all matrices.
2 Recall that FV (P ) is skew-symmetric.

Proof: Using the first order approximation for the neigh-
borhood of the orthogonal matrix P , P (Ω) ≈ P (I + Ω),
where Ω is skew-symmetric, we can show that

1
2
‖P (I + Ω)A1 −A2P (I + Ω)‖2F ≈

≈ 1
2
‖PA1 −A2P‖2F + tr

(
PT A2PA1 −A1P

T A2P
)
Ω,

where we have neglected terms of the order of Ω2.
Clearly, the quantity 〈(PT A2PA1 − A1P

T A2P ), ·〉
represents the negative gradient of V1 at P . Us-
ing Ṗ = PΩ we can express the gradient flow as
PT Ṗ = PT A2PA1 − A1P

T A2P , which completes the
proof. 2

The following result guarantees that the gradient flow
defined in equation (4) locally minimizes the cost func-
tion V1. Moreover, it characterizes the critical points of
this gradient flow.

Theorem 9 (Adopted from [17]) For any P (0) ∈
On, consider the gradient flow (4). Then, limt→∞ P (t) =
P∞ exists and is a orthogonal matrix of the form
P∞ = V ΠSUT that locally minimizes the value of the
objective function V1, where U , V orthogonal, Π a per-
mutation matrix and S a square root of the identity
matrix, i.e., S = diag(±1, . . . ,±1).

Proof: Since (PT A2PA1−A1P
T A2P ) is skew-symmetric

for all t ≥ 0, P (t) is orthogonal for all t ≥ 0, by Lemma
7. Let V1(P ) = 1

2‖PA1−A2P‖2F be a Lyapunov function
candidate for our problem. Clearly, V1(P ) ≥ 0 for all P
with equality if and only if P is a permutation matrix
and A1, A2 are isomorphic. Expanding V1(P ) we get

V1(P ) =
1
2
tr(PA1 −A2P )(PA1 −A2P )T

=
1
2
tr(A2

1 + A2
2)− tr(PA1P

T A2).

To simplify notation, let X1(P ) = PT A2PA1 −
A1P

T A2P with XT
1 = −X1. Then, Ṗ = PX1 and the

time derivative of V1(P ) becomes

V̇1(P ) =−tr(ṖA1P
T A2 + PA1Ṗ

T A2)
=−tr

(
PX1A1P

T A2 − PA1X1P
T A2

)

=−tr
(
A1P

T A2P − PT A2PA1

)
X1

=−trXT
1 X1 = −‖X1‖2F .

Hence, V̇1(P ) is non-increasing, which implies that P

asymptotically converges to the set C = {P | V̇1(P ) =
0} = {P | PT A2PA1 = A1P

T A2P} of critical points of
the flow (4).
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Let λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn

be the eigenvalues of A1 and A2 respectively and let
A1 = UΛUT and A2 = V MV T be their corresponding
eigendecompositions, with U and V orthogonal matrices
and Λ = diag(λi) and M = diag(µi). We have

PT A2PA1 = A1P
T A2P

PT V MV T PUΛUT = UΛUT PT V MV T P

MV T PUΛUT PT V = V T PUΛUT PT V M

MΘ = ΘM,

where Θ = V T PUΛUT PT V . Since the (i, j)-th element
of MΘ = ΘM is (µi − µj)θij we see that MΘ = ΘM
vanishes only when Θ is diagonal. Since V T PU is orthog-
onal, Λ and Θ have the same eigenvalues and since they
are both diagonal matrices, Θ should result from some
permutation on the matrix Λ. In other words, V T PU
has to be a matrix of the form V T PU = ΠS, where
Π is a permutation matrix and S is a square root of
the identity matrix, i.e., S = diag(±1, . . . ,±1). Hence,
P = V ΠSUT , which further implies that the set of crit-
ical points C of equation (4) is a finite set consisting of
2nn! elements. Hence, the limit P∞ exists. 2

3.2 Converging to a Permutation matrix

By Lemma 5, we can guarantee that P will converge to
a permutation matrix, as long as it flows in the space
of orthogonal matrices, and in the limit, it is element-
wise non-negative. Hence, we need to define a cost func-
tion that penalizes negative entries in P . Inspired by the
well-known Big M method [26], where multiplication of
certain variables in the cost function by large weights
forces them to become either negative or positive in the
final optimal solution, let V2 : On → R be defined by

V2(P ) =
2
3
trPT

(
P − (P ◦ P )

)
, (5)

where A◦B denotes the Hadamard or elementwise prod-
uct of the matrices A = (aij) and B = (bij), i.e., A◦B =
(aijbij). Since P ∈ On we have PT P = PPT = I and
so, V2(P ) = 2n

3 − 2
3

∑n
i,j=1 p3

ij . Due to multiplication of
the entries pij of P in V2(P ) by positive weights p2

ij > 0,
minimizing V2(P ) forces them to be as “positive” as pos-
sible, according to the Big M concept. In particular, we
show that the gradient flow on the cost function defined
in (5) indeed converges to a permutation matrix. The fol-
lowing proposition describes the gradient flow of V2(P ).

Proposition 10 Assuming the standard metric on the
orthogonal group, the gradient flow of the function V2 :
On → R is given by

Ṗ = P
(
PT (P ◦ P )− (P ◦ P )T P

)
. (6)

Proof: Observe that, trPT (P ◦ P ) = 1
2

(
tr(P ◦ P )T P +

trPT (P ◦ P )
)
. Hence,

V2(P ) =
2n

3
− 1

3

(
tr(P ◦ P )T P︸ ︷︷ ︸

X1(P )

+ trPT (P ◦ P )︸ ︷︷ ︸
X2(P )

)
. (7)

Using the first order approximation for the neighbor-
hood of the orthogonal matrix P , P (Ω) ≈ P (I + Ω),
where Ω is skew-symmetric, we get

X1(P (I + Ω))≈ tr(P ◦ P )T P +
+tr

(
(P ◦ P )T P − 2PT (P ◦ P )

)
Ω, (8)

where we have neglected terms of the order of Ω2

and have made use of the identity tr(PT ◦ ΩPT )P =∑
i,k pki

(∑
j ωijpkj

)
pki =

∑
k,i p2

ki

( ∑
j ωijpkj

)
=

tr(P ◦ P )ΩPT . Similarly,

X2(P (I + Ω))≈ trPT (P ◦ P ) +
+tr

(
2(P ◦ P )T P − PT (P ◦ P )

)
Ω, (9)

where again we have neglected terms of the order of
Ω2 and have made use of the identity trPT (P ◦ PΩ) =∑

i,k pkipki

(∑
j pkjωji

)
=

∑
i,k p2

ki

( ∑
j pkjωji

)
=

tr(P ◦ P )T PΩ. Substituting equations (8) and (9) in
(7) we get

V2(P (I + Ω)) ≈ V2(P ) + tr
(
PT (P ◦P )− (P ◦P )T P

)
Ω.

As before, we conclude that the quantity 〈(PT (P ◦P )−
(P ◦ P )T P ), ·〉 represents the negative gradient of V2 at
P . Using Ṗ = PΩ we can express the gradient flow as
PT Ṗ = PT (P ◦ P ) − (P ◦ P )T P , which completes the
proof. 2

In the rest of this section we show that the gradient flow
defined in (6) decreases the value of the cost function
V2(P ) and in the limit, forces the entries of P to become
non-negative. In particular, the following three results
establish that V2(P ) is a Lyapunov function for the sys-
tem (6) and characterize its critical points.

Lemma 11 Let V2(P ) = 2
3trP

T
(
P − (P ◦ P )

)
. Then,

V2(P ) ≥ 0 for all P ∈ On with equality if and only if P
is a permutation matrix.

Proof: Since, the rows and columns of P form vectors of
unit magnitude, |pij | ≤ 1 for all i, j. Hence, |p3

ij | ≤ p2
ij

for all i, j with equality if and only if pij equals 0 or
±1. Summing over j we get −1 ≤ ∑n

j=1 p3
ij ≤ 1, since∑n

j=1 p2
ij = 1 for all i by orthogonality of P . Clearly, the

right-hand side inequality becomes equality if and only
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if pij = 1 for exactly one j and pik = 0 for k 6= j. In the
same way, the left-hand side inequality becomes equality
if and only if pij = −1 for exactly one j and pik = 0 for
k 6= j. Now, summing over i we get−n ≤ trPT (P ◦P ) ≤
n, which clearly implies that V2(P ) ≥ 0 for all P ∈ On

with equality if and only if trPT (P ◦ P ) = n. Following
the previous argument, trPT (P ◦ P ) = n is true if and
only if each row of P has exactly one entry equal to 1 and
the rest of the entries equal to 0. By orthogonality of P ,
this implies that such a P is a permutation matrix. 2

Lemma 12 For any P (0) ∈ On, consider the gradient
flow (6) and, as before, let V2(P ) = 2

3trP
T
(
P − (P ◦

P )
)
. Then, V̇2(P ) ≤ 0 for all t ≥ 0 with equality if

and only if P (t) = SΠ, where S is a square root of the
identity matrix, i.e., S = diag(±1, . . . ,±1), and Π is a
permutation matrix.

Proof: Since PT (P ◦P )− (P ◦P )T P is skew-symmetric
for all t ≥ 0, P (t) is orthogonal for all t ≥ 0, by Lemma
7. From equation (7) we have

V2(P ) =
2n

3
− 1

3
tr

(
(P ◦ P )T P + PT (P ◦ P )

)
.

To simplify notation, let X2(P ) = PT (P ◦ P ) − (P ◦
P )T P with XT

2 = −X2. Then, Ṗ = PX2 and the time
derivative of V2(P ) becomes

V̇2(P ) =−1
3
tr

(
2(P ◦ Ṗ )T P + (P ◦ P )T Ṗ + ṖT (P ◦ P )

+2PT (P ◦ Ṗ )
)

= tr
(
PT (P ◦ P )− (P ◦ P )T P

)
X2

= trX2
2 = −trX2X

T
2 = −‖X2‖2F ,

where we have also used the identities tr(PT ◦
X2P

T )P = tr(P ◦ P )X2P
T and trPT (P ◦ PX2) =

tr(P ◦ P )T PX2. Hence, V̇2(P ) ≤ 0 for all t ≥ 0 with
V̇2(P ) = 0 if and only if (P ◦P )T P = PT (P ◦P ). In the
rest of this proof we will explicitly describe the orthog-
onal matrices P that satisfy (P ◦ P )T P = PT (P ◦ P ).

Let σ1 ≥ · · · ≥ σn ≥ 0 be the singular values of (P ◦ P )
and let (P ◦ P ) = UΣV T be its singular value decom-
position, with U and V orthogonal matrices and Σ =
diag(σi). Since, (P ◦ P )T P = PT (P ◦ P ) we have that

(P ◦ P )T (P ◦ P ) = (P ◦ P )T PPT (P ◦ P )
= PT (P ◦ P )(P ◦ P )T P

= PT UΣV T V ΣUT P = PT UΣ2UT P.

Moreover, (P ◦ P )T (P ◦ P ) = V ΣUT UΣV T = V Σ2V T

and hence, V Σ2V T = PT UΣ2UT P , which implies that
Σ2 = V T PT UΣ2UT PV or equivalently, that UT PV =

S and so, P = USV T for some square root of the identity
matrix S. In other words, there exists an S such that
every critical point P can be written as P = USV T .
Since, (P ◦ P ) = UΣV T we have that

(USV T ◦ USV T ) = UΣV T . (10)

Clearly, Σ = (S◦S) = I is a solution to equation (10), by
Corollary 17 (see Appendix). Moreover, by uniqueness
of the singular values, Σ = (S ◦ S) = I is the unique
solution to equation (10). Hence, by Corollary 17 on
factoring properties of Hadamard products, the only way
that U and V T can be factored out from the expression
(USV T ◦ USV T ) is when they both are permutation
matrices. 3 Hence, equation (10) can only be true if U
and V are permutation matrices and Σ = (S ◦ S) = I.
We conclude that every critical point P has to be of the
form P = SΠ, which completes the proof. 2

Lemma 13 Consider the gradient flow (6) and let C =
{P | V̇2(P ) = 0} be its set of critical points. Then, the
only stable critical points are the permutation matrices.

Proof: In order to characterize the critical points of Ṗ =
P

(
PT (P ◦P )−(P ◦P )T P

)
we will study the linearization

of the system in a neighborhood of a critical point. Using
orthogonality of P we have Ṗ = (P ◦P )−P (P ◦P )T P ,
which expressed elementwise becomes

ṗij = p2
ij −

n∑

k=1

pik

n∑
m=1

p2
mkpmj .

Let p̄ = [p11 p12 . . . p(n−1)n pnn]T be the n2 × 1 vec-
tor resulting from stacking the columns of P in a single
column vector and define

fij(p̄) , p2
ij −

n∑

k=1

pik

n∑
m=1

p2
mkpmj .

Let f̄(p̄) = [f11(p̄) f12(p̄) . . . f(n−1)n(p̄) fnn(p̄)]T be the
n2 × 1 vector resulting from stacking all the functions
fij(p̄) in a single vector. Then, the linearization of the
system in a neighborhood of a critical point becomes

˙̄p =
∂f̄(p̄)

∂p̄

∣∣∣∣
C
p̄. (11)

Hence, we need to compute the partial derivative of
fij(p̄) with respect to pst and evaluate it at a critical

3 Note that, by Lemma 16 (see Appendix), since USV T

is orthogonal, we can also have the factorization (USV T ◦
USV T ) = USV T with USV T a permutation matrix. How-
ever, by equation (10), this would imply that Σ = S which
contradicts the requirement that Σ ≥ 0.
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point. Let

δij,st =

{
1 if i = s and j = t

0 otherwise

denote the Kronecker Delta functions. Similarly we can
define δi,s to equal 1 only if i = s and 0 otherwise. We
have

∂fij(p̄)
∂pst

=
∂p2

ij

∂pst
−

n∑

k,m=1

∂

∂pst
(pikp2

mkpmj)

= 2δij,stpij −
n∑

k,m=1

(
δik,stp

2
mkpmj +

+2δmk,stpikpmkpmj + δmj,stpikp2
mk

)

= 2δij,stpij −
n∑

m=1

δi,sp
2
mtpmj − 2pitpstpsj −

−
n∑

k=1

δj,tpikp2
sk.

From Lemma 12, the set of critical points is C =
{P | V̇2(P ) = 0} = {P | P = SΠ}, where S = diag(si)
is a square root of the identity matrix and Π = (πij) is a
permutation matrix. Hence, at a critical point we have
pij = siπij and evaluating the partial derivative ∂fij(p̄)

∂pst

at that point we get

∂fij(p̄)
∂pst

∣∣∣∣
C

= 2δij,stsiπij −
n∑

m=1

δi,sδj,t(smπmj)3 −

−2δij,st(siπij)3 −
n∑

k=1

δj,tδi,s(siπik)3

=−δij,st

(
si +

n∑
m=1

smπmj

)
.

So, the linearization (11) becomes

ṗij = −
(
si +

n∑
m=1

smπmj

)
pij for all i, j. (12)

Suppose that si = 1 for all i. Then, ṗij = −2pij for all
i, j and hence, the system (12) is stable. Suppose now
that there exists at least one index k such that sk = −1.
Then, since every row of Π has exactly one entry equal
to 1, there exists an index l such that πkl = 1 and so
ṗkl = 2pkl, i.e., there exists at least one unstable state.
Hence, the only stable critical points are the permutation
matrices Π, which completes the proof. 2

We can summarize the results of Lemmas 11, 12 and 13
in the following theorem.

Theorem 14 Consider the gradient flow Ṗ = P
(
PT (P◦

P )−(P ◦P )T P
)
, defined in (6). Then limt→∞ P (t) = P∞

exists and, for almost all initial conditions P (0) ∈ On,
is a permutation matrix.

3.3 Superposition of the Gradient Flows

Up to this point we have defined two gradient flows on
the space of orthogonal matrices that minimize their as-
sociated cost functions, while the second one also con-
verges to a permutation matrix. It is reasonable, thus, to
expect that by combining these two gradient flows we can
achieve the desired objective in Problem 6. In particular,
we consider two ways of combining the gradient flows.
The first approach superimposes the gradient flows by
adding them, whereas the second approach initially ig-
nores the nonnegativity requirement and switches to the
permutation gradient flow when the objective has been
sufficiently minimized.

Theorem 15 Consider the convex combination of the
gradient flows (4) and (6)

Ṗ = (1− k)P
(
PT A2PA1 −A1P

T A2P
)

+

+kP
(
PT (P ◦ P )− (P ◦ P )T P

)
, (13)

where 0 < k < 1. Then, for k sufficiently close to 1,
limt→∞ P (t) = P∞ exists and, for almost all initial con-
ditions P (0) ∈ On, approximates a permutation matrix
that locally minimizes the cost V1(P ).

Proof: To simplify notation, let X1(P ) = PT A2PA1 −
A1P

T A2P and X2(P ) = PT (P ◦P )− (P ◦P )T P , where
X1(P ) and X2(P ) are skew-symmetric matrices. Then,
the system dynamics (13) become

Ṗ = (1− k)PX1 + kPX2 = P ((1− k)X1 + kX2).

Let V : On → R, such that V (P ) = (1 − k)V1(P ) +
kV2(P ) be a Lyapunov function candidate for the sys-
tem, where V1(P ) = 1

2‖PA1 − A2P‖2F and V2(P ) =
2
3trP

T
(
P − (P ◦P )

)
, as they were defined earlier. Since,

V1(P ) ≥ 0 and V2(P ) ≥ 0 for all P ∈ On, we also have
that V (P ) ≥ 0 for all P ∈ On and V (P ) = 0 if and only
if the graphs G1 and G2 are isomorphic (in which case P
is exactly a permutation matrix). The time derivative of
V (P ) is V̇ (P ) = (1 − k)V̇1(P ) + kV̇2(P ) and, as before
we can show that V̇1(P ) = −trX1((1 − k)X1 + kX2)T

and V̇2(P ) = −trX2((1− k)X1 + kX2)T . Hence,

V̇ (P ) =−tr((1− k)X1 + kX2)((1− k)X1 + kX2)T

=−‖(1− k)X1 + kX2‖2F ,

which implies that V̇ (P ) is non-increasing and so P will
converge to a local minimum, P∞. The set of critical
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Ṗ = P
[

P
T
A2PA1 − A1P

T
A2P

]

Ṗ = P
[

P
T (P ◦ P ) − (P ◦ P )T

P
]

Minimize the Objective Function

Converge to a Permutation Matrix

P (0) ∈ On

P
? ∈ On

Π ∈ Pn

Fig. 2. Switched Scheme

points of the flow (13) is C = {P | (1 − k)X1(P ) =
−kX2(P ), 0 < k < 1}. Clearly, if X2(P∞) = 0, then
P∞ = SΠ, with S = diag(±1, . . . ,±1) and Π a per-
mutation matrix (Lemma 12). Hence, as in Lemma 13,
linearizing (13) around C, we can show that for k suffi-
ciently close to 1, the only stable critical points are per-
mutation matrices.

Assume that we want P∞ to be in an ε neighborhood of
a permutation matrix, for some ε > 0, i.e., we want P∞
to satisfy a condition of the form ‖X2(P∞)‖2 < ε. Since,
P∞ ∈ C the equation (1− k)X1(P∞) = −kX2(P∞) im-
plies that (1 − k)‖X1(P∞)‖2 = k‖X2(P∞)‖2. Hence,
‖X2(P∞)‖2 < ε if and only if (1−k)

k ‖X1(P∞)‖2 < ε. So,

by choosing, k >
1
ε maxP∈On ‖X1(P )‖2

1+ 1
ε maxP∈On ‖X1(P )‖2 we can guaran-

tee that P∞ will be as close as we want to a permuta-
tion matrix. Clearly, the closer k is to 1, the smaller ε
can be. Note at this point that maxP∈On ‖X1(P )‖2 is
bounded since ‖X1(P )‖2 is a continuous function of P
on the compact space of orthogonal matricesOn. Hence,
k is well defined. 2

It is clear from Theorem 15 that if we want P to con-
verge exactly to a permutation matrix, we should choose
k → 1. In this way, however, we lose track of the other
objective which is to find the permutation matrix that
minimizes the distance between the weighted graphs G1

and G2. Hence, there is a tradeoff between how close the
final solution is to a permutation matrix and how well it
serves as a minimizer of the objective function (3). Intu-
itively, the closer P is to the optimal permutation ma-
trix, the less k affects the performance of the algorithm,
since in this case, it only affects the speed of convergence
to that permutation matrix. In other words, initializa-
tion of the problem is important. In order to take advan-
tage of this fact, we can think of the following switched
scheme for our problem (Figure 2).

The idea is to first apply the gradient flow (4) to mini-
mize the objective function V1, and use its solution P ?

as a “good” initial condition for the gradient flow (6) in
order to converge to a permutation matrix Π. In the fol-
lowing section we implement our dynamical systems ap-

proach to various non-trivial weighted graph matching
problems.

4 Simulation Results

In the previous sections we developed two provably cor-
rect gradient flows on the space of orthogonal matrices
and discussed how they can be combined to solve the
weighted graph matching problem. In this section we dis-
cuss some heuristics and show that our algorithm gives
very good results in practice.

Note first, that the space of orthogonal matricesOn con-
sists of two connected components, one with elements
having determinant 1 and one with elements having de-
terminant −1. Since, the gradient flow we defined on
On remains, for all time, in the connected component
in which it was initialized, we need to sample both con-
nected components, at least once each, and take the best
solution. Moreover, since initialization of the problem is
important, we choose to employ the hybrid scheme we
discussed earlier, where we first apply dynamical sys-
tem (4) to minimize the objective function V1 and get
a “good” solution P ? (that is orthogonal but not a per-
mutation matrix), which we then use as a “good” initial
condition for the combined dynamical system (with k
sufficiently close to 1) in order to converge to a permu-
tation matrix Π.

We implemented our algorithm using random weighted
adjacency matrices A1 and A2, and initializing the first
phase of our hybrid scheme with random orthogonal ma-
trices (we sampled both connected components of On).
Bellow we present an instance of the final permutation
matrix Π that our algorithm gave in the case of a 10×10
graph matching problem with weighted adjacency matri-
ces randomly generated from the uniform distribution.

Π4:10,3:6 =




0.0022 0.0031 1.0000 −0.0020

−0.0004 0.0001 0.0019 1.0000

−0.0002 0.0005 −0.0013 −0.0030

0.0005 0.0031 −0.0027 −0.0024

−0.0001 0.0024 −0.0011 −0.0015

0.0012 1.0000 −0.0031 −0.0001

1.0000 −0.0012 −0.0022 0.0004




The following table shows how the objective function
V1(P ) = 1

2‖PA1 − A2P‖2F varies after each one of the
two phases of the proposed hybrid scheme, i.e., for P =
P ? and P = Π, applied to an instance of the previous
problem.
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Initialization Phase I Phase II

det = −1 34.8605 0.1527 5.9719

det = 1 36.5412 0.1527 5.9672

Observe that the final solution results in an objective
value approximately six times smaller than the initial
one. This considerable decrease in the objective function
gives rise to the question of how close the final solution
is to the optimal one. Since, we do not have any global
results, but only guarantees that the algorithm will con-
verge to a local minimum, we compared the best solu-
tion, i.e., the solution Π such that V1(Π) = 5.9672, with
a sample of 106 randomly generated 10×10 permutation
matrices P (there are 10! = 3, 628, 800 such permuta-
tion matrices in total). We observed that V1(Π) ≤ V1(P )
for approximately 96% of the samples P . Hence, roughly
speaking, we may conclude that our algorithm does in-
deed provide a very good solution to the weighted graph
matching problem.

Finally, we implemented our method for problems of size
50 × 50. In the following table we present the value of
the objective function V1(P ) = 1

2‖PA1 −A2P‖2F at the
end of the two phases of the algorithm.

Initialization Phase I Phase II

det = −1 800.6253 0.3473 162.0595

det = 1 807.1942 0.3416 169.3697

Again we notice a significant decrease in the value of
the objective function. More important, however, is the
running time of the algorithm, which makes us believe
that it could be a promising idea for further research. In
particular, on an Intel Centrino 2GHz with 1Gb mem-
ory laptop, using Matlab 6 and low level programming
(Runge-Kutta 4 with constant step size), it took on av-
erage 30 mins for the first phase to converge and 3 mins
for the second phase. It is worth noting that on the same
laptop and using SeDuMi, we failed to solve semidefinite
programming relaxations (of the non-convex orthogo-
nality constraint) of the same size.

5 Conclusions

In this paper, we considered the problem of finding the
optimal relabelling of the vertices of a graph so that
its distance from some reference graph is minimized in
the Frobenious norm sense. We relaxed the combinato-
rial nature of the problem by using an equivalent repre-
sentation for the set of permutation matrices as the in-
tersection of the space of orthogonal matrices with the
set of elementwise non-negative matrices. This represen-
tation gave rise to defining two gradient flows on the
space of orthogonal matrices, such that one minimizes
the distance of the two graphs and the second converges

to a permutation matrix. We discussed superimposing
the two gradient flows for the weighted graph matching
problem, as well as initialization issues that lead to a
hybrid scheme consisting of sequentially combining the
two flows. Our algorithm is provably correct and the
simulations illustrate our theoretical results, as well as
the high performance achieved when combined with the
proposed heuristics.
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A Factoring Properties of Hadamard Products

Lemma 16 Let V ∈ On. Then, (UV T ◦ UV T ) = (U ◦
U)V T for all U ∈ On if and only if V is a permutation
matrix.

Proof: Let V = (vij) and U = (uij). Clearly, if V ∈ Pn,
the equality (UV T ◦ UV T ) = (U ◦ U)V T expressed el-
ementwise gives

(∑n
k=1 uikvjk

)2 =
∑n

k=1 u2
ikvjk, for all

i, j. Since V is a permutation matrix, there exists ex-
actly one index m such that vjm = 1 and vjk = 0 for
all k 6= m. Hence, the previous equality is identically
true for all U ∈ On. Now, suppose that V ∈ On but
V 6∈ Pn. By Lemma 5 there exists indices j and m
such that vjm < 0. We need to show that there exists
a U ∈ On such that the previous equality is not true.
In particular, let U ∈ Pn such that uim = 1. Then, the
equality (UV T ◦UV T ) = (U ◦U)V T expressed element-
wise gives v2

jm = vjm which contradicts the assumption
that vjm < 0. Hence, V has to be a permutation matrix,
which completes the proof. 2

Corollary 17 Let S be a square root of the identity
matrix, i.e., S = diag(±1, . . . ,±1). Then, (USV T ◦
USV T ) = U(S ◦ S)V T for all S if and only if U and V
are permutation matrices.

Proof: By Lemma 16, (USV T ◦USV T ) = (US ◦US)V T

for all US ∈ On if and only if V is a permutation matrix.
Similarly, (US ◦ US) = U(S ◦ S) if and only if U is a
permutation matrix. Hence, (USV T ◦ USV T ) = U(S ◦
S)V T for all S if and only if U and V are permutation
matrices. 2
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