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Abstract— We consider the Accelerated Distributed Aug-
mented Lagrangians (ADAL) algorithm, a distributed optimiza-
tion algorithm that was recently developed by the authors to ad-
dress problems that involve multiple agents optimizing a separa-
ble convex objective function subject to convex local constraints
and linear coupling constraints. Optimization using augmented
Lagrangians (AL) combines low computational complexity with
fast convergence speeds due to the regularization terms included
in the AL. However, decentralized methods that employ ALs are
few, as decomposition of ALs is a particularly challenging task.
ADAL is a primal-dual iterative scheme where at every iteration
the agents locally optimize a novel separable approximation of
the AL and then appropriately update their primal and dual
variables, in a way that ensures convergence to their respective
optimal sets. In this paper, we prove that ADAL has a worst-
case O(1/k) convergence rate, where k denotes the number of
iterations. The convergence rate is established in an ergodic
sense, i.e., it refers to the ergodic average of the generated
sequences of primal variables up to iteration k.

I. INTRODUCTION

Distributed optimization methods have recently received
significant attention because they allow us to solve a problem
by decomposing it into smaller, more manageable subprob-
lems that can be solved in parallel. For this reason, they
are widely used to solve large-scale problems arising in
areas as diverse as wireless communications, optimal con-
trol, machine learning, artificial intelligence, computational
biology, finance and statistics, to name a few. Moreover,
distributed algorithms avoid the cost and fragility associated
with centralized coordination, and provide better privacy
for the autonomous decision makers. These are desirable
properties in applications involving networked systems, such
as multi-agent robotics, communication or sensor networks,
and power distribution systems.

Classic decomposition algorithms utilize the separable
structure of the dual function [1, 2]. These methods have
low computational cost, however, they suffer from very slow
convergence rates and non-uniqueness of solutions, which
necessitate the application of advanced techniques from
non-smooth optimization in order to ensure the numerical
stability and efficiency of the procedure. These drawbacks
are alleviated by the application of regularization techniques
such as bundle methods and by the augmented Lagrangian
(AL) framework. The convergence speed and the numerical
advantages of AL methods [1]–[3] provide a strong motiva-
tion for creating decomposed versions of them.
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Early specialized techniques that allow for decomposition
of the AL can be traced back to the works [4]–[6]. More
recent literature involves the Diagonal Quadratic Approxim-
mation (DQA) algorithm [7, 8] and the Alternating Direction
Method of Multipliers (ADMM) [1, 9]–[11]. These methods
possess some interesting similarities and differences, despite
the fact that their convergence proofs follow completely
different paths. The DQA method replaces each minimization
step in the augmented Lagrangian algorithm [1, 2] by a
separable approximation of the AL function. The ADMM
methods are based on the relations between splitting methods
for monotone operators, such as Douglas-Rachford splitting,
and the proximal point algorithm [9, 12].

In this paper, we focus on the Accelerated Distributed
Augmented Lagrangians (ADAL) method, a distributed algo-
rithm that we have recently developed in [13] for the solution
of optimization problems with separable convex objective
functions, local convex constraints, and linear coupling con-
straints. Specifically, ADAL is a primal-dual iterative scheme
where at every iteration the agents solve a small local
optimization problem, and then appropriately update their
primal and dual variables. It was shown in [13] that, under
typical convexity assumptions, the ADAL method generates
sequences of primal and dual variables that converge to their
respective optimal values. The method has been applied to
network flow [13, 14], wireless communications [15, 16],
and stochastic optimization [17] problems, and numerical
results suggest that it compares favorably to the classic dual
decomposition methods, as well as the current state-of-the-
art AL distributed methods such as the DQA and ADMM.

The contribution of this paper is to show that ADAL has
a worst-case O(1/k) convergence rate, where k denotes the
iteration number. The convergence rate is established in an
ergodic sense, i.e., it refers to the ergodic average of the
generated sequence of primal variables up to iteration k. The
analysis in this paper is related to that in [18], where an
analogous result was shown for the ADMM algorithm. We
note that a significant number of works on characterizing
the convergence rate of the popular ADMM algorithm has
emerged very recently; see, e.g., [19]–[28]. These works
make various assumptions, the most common being strong
convexity of the objective function.

The rest of this paper is organized as follows: In Section II,
we define the optimization problem of interest and state some
basic theoretical preliminaries. In Section III, we present the
ADAL algorithm and review some of its basic aspects. The
main result of this paper is found in Section IV, where the
proof of the O(1/k) convergence rate of ADAL is developed.



Algorithm 1 Augmented Lagrangian Method (ALM)
Set k = 1 and define initial Lagrange multipliers λ1.

1. For a fixed vector λk, calculate xk+1 as a solution of
the problem:

min
x∈X

Λρ(x, λ
k). (4)

2. If the constraints
∑N
i=1 Aix

k+1
i = b are satisfied, then

stop (optimal solution found). Otherwise, set :

λk+1 = λk + ρ
(∑N

i=1
Aix

k+1
i − b

)
, (5)

Increase k by one and return to Step 1.

II. PROBLEM DEFINITION

We are interested in convex optimization problems of the
form

min
xi

∑N

i=1
fi(xi)

subject to
∑N

i=1
Aixi = b, (1)

xi ∈ Xi, i = 1, 2, . . . , N.

Problem (1) models situations where a set I = {1, 2, . . . , N}
of decision makers, henceforth referred to as agents, need
to determine local decisions xi ∈ Xi that minimize a
collection of functions fi(xi), while respecting a set of affine
coupling constraints

∑N
i=1 Aixi = b. Here, for all i ∈ I,

the functions fi : Rni → R are convex (not necessarily
differentiable), the local sets Xi ⊆ Rni for i ∈ I are
nonempty closed and convex, and Ai is m× ni. Let

F (x) =
∑N

i=1
fi(xi),

where x = [x>1 , . . . ,x
>
N ]> ∈ Rn, and n =

∑N
i=1 ni. Denot-

ing A = [A1 . . .AN ] ∈ Rm×n, the constraint
∑N
i=1 Aixi =

b in problem (1) becomes Ax = b. Associating Lagrange
multipliers λ ∈ Rm with that constraint, the Lagrangian for
(1) is defined as

L(x, λ) = F (x) + 〈λ,Ax− b〉 (2)

=
∑N

i=1
Li(xi, λ)− 〈b, λ〉,

where Li(xi, λ) = fi(xi)+〈λ,Aixi〉, and 〈·, ·〉 denotes inner
product. Then, the dual function is defined as

g(λ) = inf
x∈X

L(x, λ) =
∑N

i=1
gi(λ)− 〈b, λ〉,

where X = X1 ×X2 · · · × XN , and

gi(λ) = inf
xi∈Xi

[
fi(xi) + 〈λ,Aixi〉

]
.

The dual function is decomposable and this gives rise to
decomposition methods that address the dual problem [1, 2]

max
λ∈Rm

∑N

i=1
gi(λ)− 〈b, λ〉. (3)

Such dual methods suffer from well-documented disadvan-
tages, the most notable ones being their exceedingly slow

Algorithm 2 Accelerated Distributed Augmented La-
grangians (ADAL)
Set k = 1 and define initial Lagrange multipliers λ1 and
initial primal variables x1.

1. For fixed Lagrange multipliers λk, determine x̂ki for
every i ∈ I as the solution of the following problem:

min
xi∈Xi

Λiρ(xi,x
k, λk). (7)

2. Set for every i ∈ I

xk+1
i = xki + τ(x̂ki − xki ). (8)

3. If the constraints
∑N
i=1 Aix

k+1
i = b are satisfied and

Aix̂
k
i = Aix

k
i for all i ∈ I, then stop (optimal

solution found). Otherwise, set:

λk+1 = λk + ρτ
(∑N

i=1
Aix

k+1
i − b

)
, (9)

increase k by one and return to Step 1.

convergence rates and the requirement for strictly convex
objective functions. These drawbacks can be alleviated by
the AL framework [1]–[3]. The AL associated with problem
(1) is

Λρ(x, λ) = f(x) + 〈λ,Ax− b〉 +
ρ

2
‖Ax− b‖2, (6)

where ρ > 0 is a penalty parameter. We recall the stan-
dard augmented Lagrangian method, also referred to as the
“Method of Multipliers” in the literature [1, 2], in Alg. 1.

A major drawback of the Augmented Lagrangian Method
stems from the fact that problem (4) is not in separable
form due to the quadratic penalty term in (6). This calls
for the development of specialized techniques to decompose
the augmented Lagrangian, such as [4]–[11].

III. THE ADAL ALGORITHM

In this section, we describe the Accelerated Distributed
Augmented Lagrangian (ADAL) method, a specialized AL
decomposition technique developed by the authors in [13]
to solve problems of the form (1). ADAL is a primal-dual
iterative scheme, where each iteration consists of three steps.
First, every agent solves a local convex optimization problem
based on a separable approximation of the AL, that utilizes
only locally available variables. Then, the agents update and
communicate their primal variables to neighboring agents.
Finally, they update their dual variables based on the val-
ues of the communicated primal variables. The method is
summarized in Alg. 2.

For every agent i ∈ I, we define the local augmented
Lagrangian function Λiρ : Rni × Rn × Rm → R as

Λiρ(xi,x
k, λ) = fi(xi) + 〈λ,Aixi〉 (10)

+
ρ

2
‖Aixi +

∑j 6=i

j∈I
Ajx

k
j − b‖2.

At the first step of each iteration, each agent minimizes its
local AL subject to its local convex constraints, cf. (7). Note



that the variables Ajx
k
j , appearing in the penalty term of

the local AL (10), correspond to the local primal variables
of agent j that were communicated to agent i. With respect
to agent i, these are considered fixed parameters. The penalty
term of each Λiρ can be equivalently expressed as

‖Aixi +
∑j 6=i

j∈I
Ajx

k
j − b‖2 =

=
∑m

l=1

([
Aixi

]
l
+
∑j 6=i

j∈I

[
Ajx

k
j

]
l
− bl

)2
.

The above penalty term is involved only in the minimization
computation (7). Hence, for those l such that [Ai]l = 0,
the terms

∑j 6=i
j∈I

[
Ajx

k
j

]
l
− bl are just constant terms in

the minimization step, and can be excluded. Here, [Ai]l
denotes the l-th row of Ai and 0 stands for a zero vector
of proper dimension. This implies that subproblem i needs
access only to the decisions

[
Ajx

k
j

]
l

from all subproblems
j 6= i that are involved in the same constraints l as i.
Moreover, regarding the term 〈λ,Aixi〉 in (10), we have
that 〈λ,Aixi〉 =

∑m
j=1 λj [Aixi]j . Hence, we see that, in

order to compute (7), each subproblem i needs access only
to those λj for which [Ai]j 6= 0.

The second step of ADAL consists of each agent updating
its primal variables by taking a convex combination with
the corresponding values from the previous iteration, cf. (8).
This update depends on a stepsize τ which must satisfy τ ∈
(0, 1q ) to ensure convergence [13]. Here, q is defined as the
maximum degree, and is a measure of sparsity of the total
constraint matrix A. Specifically, for each constraint j =
1, . . . ,m, we introduce a measure of involvement. We denote
the number of agents i associated with this constraint by qj ,
that is, qj is the number of all i ∈ I : [Ai]j 6= 0. We define
q to be the maximum over all qj , i.e., q = max1≤j≤m qj .
Intuitively, q is the number of agents coupled in the “most
populated” constraint of the problem.

The third and final step of each ADAL iteration consists of
the dual update, cf. (9). This step is distributed by structure,
since the Lagrange multiplier of the j-th constraint is updated
according to λk+1

j = λkj +ρτ
(∑N

i=1

[
Aix

k+1
i

]
j
−bj

)
, which

implies that the udpate of λj needs only information from
those i for which [Ai]j 6= 0.

The convergence of ADAL relies on the following three
assumptions, which are typically required in the analysis of
convex optimization methods:

(A1) The functions fi are convex, and the sets Xi are
nonempty, closed, and convex for all i ∈ I .

(A2) The Lagrange function L has a saddle point (x∗, λ∗) ∈
Rn × Rm so that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀ x ∈ X , λ ∈ Rm.

(A3) All subproblems (7) are solvable at every iteration.
The convergence proof of ADAL hinges on showing that

the Lyapunov/Merit function φk = φk(xk, λk) defined by

φk = ρ
∑

i∈I
‖Ai(x

k
i − x∗i )‖2 +

1

ρ
‖λ̄k − λ∗‖2, (11)

is strictly decreasing throughout the iterations k. The vari-
ables λ̄k are defined as

λ̄k = λk + ρ(1− τ)r(xk). (12)

We recall the main convergence result of ADAL from [13].

Theorem 1 ( [13]) Assume (A1)–(A3). If the stepsize satis-
fies 0 < τ < 1

q , then, the sequence {φ(xk, λk)}, is strictly
decreasing. Moreover, if the sets Xi are bounded for all
i = 1, . . . N , then the ADAL method, either stops at an
optimal solution of problem (3), or generates a sequence
of λk converging to an optimal solution of it. Any sequence
{xk} generated by the ADAL algorithm has an accumulation
point and any such point is an optimal solution of (1).

IV. RATE OF CONVERGENCE

In this section we show that the ADAL method has a
worst-case O(1/k) rate of convergence in an ergodic sense.
Our proof relies on defining the ergodic average of the primal
variables up to iteration k as x̃k = 1

k

∑k−1
p=0 x̂

p. Specifically,
we show that the difference of the Lagrangian L(x̃k, λ∗) at
iteration k, cf. (2), from the optimal Lagrangian L(x∗, λ∗),
i.e., the nonnegative quantity L(x̃k, λ∗) − L(x∗, λ∗) ≥ 0,
decreases at a worst-case O(1/k) rate. We note that this
is a theoretical result characterizing the worst possible con-
vergence rate; in practice ADAL will converge significanlty
faster, as can be seen for example in [13]–[17].

In what follows, we denote the convex subdifferential of
a convex function f at a point x by ∂f(x). We also use
NX (x) to denote the normal cone to the set X at the point
x [2], i.e., NX (x) = {h ∈ Rn : 〈h,y − x〉 ≤ 0, ∀ y ∈
X}. To avoid cluttering the notation, we will use

∑
i to

denote summation over all i ∈ I, i.e.,
∑
i =

∑N
i=1, unless

explicitly noted otherwise. Define also the residual r(x) ∈
Rm as the vector containing the amount of all constraint
violations with respect to primal variable x, i.e., r(x) =∑
iAixi − b. Finally, we define the auxiliary variables

λ̂k = λk + ρr(x̂k). (13)

The basic step of the proof is to show that the relation

L(x̂k, λ∗)− L(x∗, λ∗) ≤ 1

2τ

(
φk − φk+1

)
(14)

holds for all iterations k. In the following lemma, we
utilize the first order optimality conditions for each local
subproblem (7) to obtain a first result towards proving (14).

Lemma 1 Assume (A1)–(A3). Then, the following holds:

L(x̂k, λ∗)− L(x∗, λ∗) ≤ −
〈
λ̂k − λ∗, r(x̂k)

〉
(15)

+ ρ
∑

i

〈
Ai

(
x∗i − x̂ki

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
.

Proof: The first order optimality conditions for each
local problem (7) imply the following inclusion

0 ∈ ∂fi(x̂ki )+ρA>i

(
λk+Aix̂

k
i +
∑
j 6=i

Ajx
k
j−b

)
+NXi(x̂

k
i ).



We infer that subgradients ski ∈ ∂fi(x̂
k
i ) and normal ele-

ments zki ∈ NXi
(x̂ki ) exist such that the above becomes

0 = ski + ρA>i

(
λk + Aix̂

k
i +

∑
j 6=i

Ajx
k
j − b

)
+ zki .

Taking the inner product of both sides of this equation with
x∗i − x̂ki and using the definition of a normal cone, we obtain〈

ski + ρA>i

(
λk + Aix̂

k
i +

∑
j 6=i

Ajx
k
j − b

)
,x∗i − x̂ki

〉
=

=
〈
− zki ,x

∗
i − x̂ki

〉
≥ 0.

Substituting λk with λ̂k, cf. (13), in the above, we get

0 ≤
〈
ski + A>i

[
λ̂k + ρ

∑
j 6=i

Aj(x
k
j − x̂kj )

]
,x∗i − x̂ki

〉
. (16)

By the definition of the subgradient of fi at x̂ki , we have the
relation

fi(xi)− fi(x̂ki ) ≥ ski
(
xi − x̂ki

)
, ∀ xi ∈ Xi. (17)

Substituting (17) for xi = x∗i into (16), we get

fi(x
∗
i )− fi(x̂ki ) +

〈
λ̂k,Ai

(
x∗i − x̂ki

)〉
+ ρ

〈
Ai

(
x∗i − x̂ki

)
,
∑

j 6=i
Aj

(
xkj − x̂ki

)〉
≥ 0.

Summing over all i, we get

F (x∗)− F (x̂k) +
〈
λ̂k,
∑

i
Ai

(
x∗i − x̂ki

)〉
+ ρ

∑
i

〈
Ai

(
x∗i − x̂ki

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
≥ 0.

Substituting
∑
iAi

(
x∗i − x̂ki

)
= b −

∑
iAix̂

k
i = −r(x̂k),

and adding and subtracting 〈λ∗, r(x̂k)〉 to the above, we get

F (x∗)− F (x̂k) −
〈
λ∗, r(x̂k)

〉
−
〈
λ̂k − λ∗, r(x̂k)

〉
+ ρ

∑
i

〈
Ai

(
x∗i − x̂ki

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
≥ 0.

Rearranging terms in the above inequality, and noting that

F (x̂k) +
〈
λ∗, r(x̂k)

〉
− F (x∗) = L(x̂k, λ∗)− L(x∗, λ∗),

we obtain

L(x̂k, λ∗)− L(x∗, λ∗) ≤ −
〈
λ̂k − λ∗, r(x̂k)

〉
+ ρ

∑
i

〈
Ai

(
x∗i − x̂ki

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
.

as required.
Next, we further manipulate the result from Lemma 1 to

obtain an expression that will help us prove (14).

Lemma 2 Assume (A1)–(A3). Then, the following holds:

L(x̂k, λ∗)− L(x∗, λ∗) (18)

+
ρ

2

∑
i

‖Ai(x
k
i − x̂ki )‖2 + ρ(τ − τ2q

2
)‖r(x̂k)‖2

≤ ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
.

Proof: Consider (15), and rearrange the terms as

−
〈
λ̂k − λ∗, r(x̂k)

〉
≥ L(x̂k, λ∗)− L(x∗, λ∗)

+ ρ
∑

i

〈
Ai

(
x̂ki − x∗i

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
.

To avoid cluttering the notation, we temporarily disregard
the L(x̂k, λ∗)−L(x∗, λ∗) term, i.e., consider only the terms

−
〈
λ̂k − λ∗, r(x̂k)

〉
≥

ρ
∑

i

〈
Ai

(
x̂ki − x∗i

)
,
∑

j 6=i
Aj

(
xkj − x̂kj

)〉
.

Add the term ρ
∑
i

〈
Ai(x̂

k
i −x∗i ),Ai(x

k
i −x̂ki )

〉
to both sides

of the above inequality, and group the terms at the right-hand
side by their common factor to get

ρ
∑

i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̂k − λ∗, r(x̂k)

〉
≥ ρ

∑
i

〈
Ai(x̂

k
i − x∗i ),

∑
j
Aj(x

k
j − x̂kj )

〉
. (19)

The term
∑
jAj(x

k
j − x̂kj ) = r(xk) − r(x̂k) is a constant

factor with respect to the summation over i in the right hand
side of the above, and

∑
iAix

∗
i = b. Hence, we have that

ρ
∑

i

〈
Ai(x̂

k
i − x∗i ),

∑
j
Aj(x

k
j − x̂kj )

〉
=

= ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
,

and (19) becomes

ρ
∑

i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̂k − λ∗, r(x̂k)

〉
≥ ρ

〈
r(x̂k), r(xk)− r(x̂k)

〉
. (20)

Next, we represent

Aix̂
k
i −Aix

∗
i = (Aix

k
i −Aix

∗
i ) + (Aix̂

k
i −Aix

k
i ) and

λ̂k − λ∗ = (λk − λ∗) + (λ̂k − λk) = (λk − λ∗) + ρr(x̂k),

in the left-hand side of (20). We obtain

ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λk − λ∗, r(x̂k)

〉
≥ ρ

∑
i
‖Ai(x

k
i − x̂ki )‖2 + ρ‖r(x̂k)‖2

+ ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
.

Adding −(1− τ)ρ
〈
r(xk), r(x̂k)

〉
to both sides of the above

inequality, and recalling the definition of λ̄k in (12), we get

ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
≥ ρ

∑
i
‖Ai(x

k
i − x̂ki )‖2 + ρ‖r(x̂k)‖2 (21)

+ ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
− (1− τ)ρ

〈
r(xk), r(x̂k)

〉
.

Consider only the last two terms ρ
〈
r(x̂k), r(xk)−r(x̂k)

〉
−

(1 − τ)ρ
〈
r(xk), r(x̂k)

〉
at the right hand side of (21). We



can manipulate them to obtain

ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
− (1− τ)ρ

〈
r(xk), r(x̂k)

〉
=

= ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
− (1− τ)ρ

〈
r(xk)− r(x̂k) + r(x̂k), r(x̂k)

〉
= τρ

〈
r(x̂k), r(xk)− r(x̂k)

〉
− (1− τ)ρ‖r(x̂k)‖2.

Substituting back in (21), we obtain

ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
≥ ρ

∑
i
‖Ai(x

k
i − x̂ki )‖2 + τρ‖r(x̂k)‖2 (22)

+ τρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
.

Our aim now is to show that the right hand side of (22)
is nonnegative at all times. For this, consider the term
τρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
= τρ

〈
r(x̂k),

∑
iAi(x

k
i − x̂ki )

〉
.

Each one of the summands in this term is bounded below by

τρ
〈
r(x̂k),Ai(x

k
i − x̂ki )

〉
= τρ

m∑
j=1

[
r(x̂k)

]
j

[
Ai(x

k
i − x̂ki )

]
j

≥ − 1

2

∑m

j=1

(
ρ
[
Ai(x

k
i − x̂ki )

]2
j

+ τ2ρ
[
r(x̂k)

]2
j

)
.

Note, however, that some of the rows of Ai might be zero. If
[Ai]j = 0, then it follows that

[
r(x̂k)

]
j

[
Ai(x

k
i − x̂ki )

]
j

= 0.
Hence, denoting the set of nonzero rows of Ai as Qi, i.e.,
Qi = {j = 1, . . . ,m : [Ai]j 6= 0}, we can obtain a tighter
lower bound for each τρ

〈
r(x̂k),Ai(x

k
i − x̂ki )

〉
term as

τρ
〈
r(x̂k),Ai(x

k
i − x̂ki )

〉
≥ (23)

− 1

2

∑
j∈Qi

(
ρ
[
Ai(x

k
i − x̂ki )

]2
j

+ τ2ρ
[
r(x̂k)

]2
j

)
.

Recalling that q denotes the maximum number of non-zero
blocks [Ai]j over all j, and summing inequality (23) over
all i, we observe that each quantity [r(x̂k)]2j is included in
the summation at most q times. This leads us to the bound

τρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
=
∑

i
τρ
〈
r(x̂k),Ai(x

k
i − x̂ki )

〉
(24)

≥ − ρ

2

∑
i
‖Ai(x

k
i − x̂ki )‖2 − τ2qρ

2
‖r(x̂k)‖2.

We substitute (24) back into (22) and arrive at

ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
≥ ρ

2

∑
i
‖Ai(x

k
i − x̂ki )‖2 + ρ(τ − τ2q

2
)‖r(x̂k)‖2. (25)

Recall that until now we have disregarded the term
L(x̂k, λ∗)−L(x∗, λ∗). Reinstating this term in (25), we get

L(x̂k, λ∗)− L(x∗, λ∗) +
ρ

2

∑
i
‖Ai(x

k
i − x̂ki )‖2

+ ρ(τ − τ2q

2
)‖r(x̂k)‖2

≤ ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
,

as required.

Now, we are ready to prove the key relation (14).
Lemma 3 Assume (A1)–(A3). Then, the following holds:

L(x̂k, λ∗)− L(x∗, λ∗) ≤ 1

2τ

(
φk − φk+1

)
. (26)

Proof: First, we show that the dual update step (9) of
ADAL is equivalent to the update rule

λ̄k+1 = λ̄k + τρr(x̂k). (27)

for the variables λ̄k. Indeed, we have

λk+1 = λk + τρr(xk+1)

= λk + τρ
[
(1− τ)r(xk) + τr(x̂k)

]
= λk + τ

[
− (1− τ)ρ

(
r(x̂k)− r(xk)

)
+ ρr(x̂k)

]
= λk − (1− τ)ρτ

(
r(x̂k)− r(xk)

)
+ τρr(x̂k).

Adding (1 − τ)ρr(xk) to both sides of the above equation
and rearranging terms we obtain

λk+1 + (1− τ)ρ
[
r(xk) + τ

(
r(x̂k)− r(xk)

)]
= λk + (1− τ)ρr(xk) + τρr(x̂k).

This is equivalent to

λk+1 + (1− τ)ρr(xk+1) = λk + (1− τ)ρr(xk) + τρr(x̂k),

which is exactly (27). With that in mind, we have that

φk − φk+1 =
∑N

i=1
ρ‖Ai(x

k
i − x∗i )‖2 +

1

ρ
‖λ̄k − λ∗‖2

−
∑N

i=1
ρ‖Ai(x

k+1
i − x∗i )‖2 −

1

ρ
‖λ̄k+1 − λ∗‖2

= 2τ

[
ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−〈

λ̄k − λ∗, r(x̂k)
〉]
− τ2

[∑
i

ρ‖Ai(x̂
k
i − xki )‖2 + ρ‖r(x̂k)‖2

]
.

Rearranging terms in the above equation, we get that

ρ
∑

i

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k − λ∗, r(x̂k)

〉
=

1

2τ

(
φk − φk+1

)
+
τρ

2

(∑
i
‖Ai(x̂

k
i − xki )‖2 + ‖r(x̂k)‖2

)
.

From the relation (18) of Lemma 2, we can substiture the
term ρ

∑
i

〈
Ai(x

k
i −x∗i ),Ai(x

k
i − x̂ki )

〉
−
〈
λ̄k−λ∗, r(x̂k)

〉
on the left hand side of the above equality, to arrive at

L(x̂k, λ∗)− L(x∗, λ∗)

+
ρ

2

∑
i
‖Ai(x

k
i − x̂ki )‖2 + ρ(τ − τ2q

2
)‖r(x̂k)‖2

≤ 1

2τ

(
φk − φk+1

)
+
τρ

2

(∑
i
‖Ai(x̂

k
i − xki )‖2 + ‖r(x̂k)‖2

)
,

or, equivalently, at

L(x̂k, λ∗)− L(x∗, λ∗) +
ρ(1− τ)

2

∑
i
‖Ai(x

k
i − x̂ki )‖2

+
ρ(τ − τ2q)

2
‖r(x̂k)‖2 ≤ 1

2τ

(
φk − φk+1

)
.



Since 0 < τ < 1
q , we have that 1 − τ > 0 and

τ − τ2q > 0. Thus, the term ρ(1−τ)
2

∑
i ‖Ai(x

k
i −

x̂ki )‖2 + ρ(τ−τ2q)
2 ‖r(x̂k)‖2 is always nonnegative, which

gives us L(x̂k, λ∗)− L(x∗, λ∗) ≤ 1
2τ

(
φk − φk+1

)
.

We can now prove the worst-case O(1/k) convergence rate
using (14) together with the properties of convex functions.
Theorem 2 Assume (A1)–(A3). Let x̃k = 1

k

∑k−1
p=0 x̂

p de-
note the ergodic average of the primal variable sequence
generated by ADAL up to iteration k. Then, for all k

0 ≤ L(x̃k, λ∗)− L(x∗, λ∗) ≤ 1

2kτ
φ0. (28)

Proof: The first inequality 0 ≤ L(x̃k, λ∗)−L(x∗, λ∗)
follows directly from the definition of a saddle point, cf.
Assumption (A2). To prove the other inequality, we proceed
as follows. Summing (26) for all p = 0, . . . , k − 1, we get∑k−1

p=0
F (x̂p) +

∑k−1

p=0

〈
λ∗, r(x̂p)

〉
−
∑k−1

p=0
F (x∗)

≤ 1

2τ

(
φ0 − φk

)
. (29)

By the convexity of F , we have that∑k−1

p=0

1

k
F (x̂p) ≥ F

(∑k−1

p=0

1

k
x̂p
)
,

which implies that
∑k−1
p=0 F (x̂p) ≥ kF (x̃k). The analogous

relation holds for
∑k−1
p=0 r(x̂p) ≥ kr(x̃k), since it is a

linear (convex) mapping. We also have that
∑k−1
p=0 F (x∗) =

kF (x∗). Hence, (29) can be expressed as

kF (x̃k) + k〈λ∗, r(x̃k)〉 − kF (x∗) ≤ 1

2τ

(
φ0 − φk

)
,

or, equivalently,

F (x̃k) + 〈λ∗, r(x̃k)〉 − F (x∗) +
1

2kτ
φk ≤ 1

2kτ
φ0.

Since φk ≥ 0, we infer that L(x̃k, λ∗)−L(x∗, λ∗) ≤ 1
2kτ φ

0,
as required.

V. CONCLUSIONS

We have considered the ADAL algorithm, an augmented
Lagrangian decomposition method for convex optimization
problems with linear coupling constraints. ADAL is a dis-
tributed iterative scheme, wherein at each iteration all agents
update their local decisions based only on local computations
and message exchanges with other neighboring agents. In this
paper, we have characterized the convergence rate of ADAL
by showing that the algorithm generates sequences of primal
variables whose ergodic averages converge to their respective
optimal values at an O(1/k) rate in the worst-case.
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[8] A. Ruszczyński, “On convergence of an Augmented Lagrangian de-
composition method for sparse convex optimization,” Mathematics of
Operations Research, vol. 20, pp. 634–656, 1995.

[9] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone
operators,” Mathematical Programming,, vol. 55, pp. 293–318, 1992.

[10] ——, “An alternating direction method for linear programming.”
LIDS, MIT, 1990.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[12] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Ap-
plications to the Numerical Solution of Boundary-Value Problems.
Amsterdam: North-Holland, 1983.

[13] N. Chatzipanagiotis, D. Dentcheva, and M. Zavlanos, “An augmented
Lagrangian method for distributed optimization,” Mathematical Pro-
gramming, 2014.

[14] ——, “Approximate augmented lagrangians for distributed network
optimization,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, Dec 2012, pp. 5840–5845.

[15] N. Chatzipanagiotis, A. Petropulu, and M. Zavlanos, “A distributed
algorithm for cooperative relay beamforming,” in American Control
Conference (ACC), 2013, June 2013, pp. 3796–3801.

[16] N. Chatzipanagiotis, Y. Liu, A. Petropulu, and M. M. Zavlanos, “Dis-
tributed cooperative beamforming in multi-source multi-destination
clustered systems,” IEEE Transactions on Signal Processing, vol. 62,
no. 23, pp. 6105–6117, Dec. 2014.

[17] N. Chatzipanagiotis and M. Zavlanos, “Distributed stochastic multi-
commodity flow optimization,” in Global Conf. on Signal and Inform.
Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp. 883–886.

[18] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas–
Rachford alternating direction method,” SIAM Journal on Numerical
Analysis, vol. 50, no. 2, pp. 700–709, 2012.

[19] D. Boley, “Local linear convergence of the alternating direction
method of multipliers on quadratic or linear programs,” SIAM Journal
on Optimization, vol. 23, no. 4, pp. 2183–2207, 2013.

[20] R. Monteiro and B. Svaiter, “Iteration-complexity of block-
decomposition algorithms and the alternating direction method of
multipliers,” SIAM Journal on Optimization, vol. 23, no. 1, pp. 475–
507, 2013.

[21] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization,”
Signal Processing, IEEE Transactions on, vol. 62, no. 7, pp. 1750–
1761, April 2014.

[22] E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, Dec 2012, pp. 5445–5450.

[23] ——, “On the O(1/k) convergence of asynchronous distributed
alternating direction method of multipliers,” arXiv:1307.8254.

[24] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Linear convergence
rate of a class of distributed augmented lagrangian algorithms,”
arXiv:1307.2482.

[25] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” Rice CAAM
technical report, 2012.

[26] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit conver-
gence rate of a distributed alternating direction method of multipliers,”
arXiv:1312.1085.

[27] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” arXiv:1208.3922.

[28] T. Lin, S. Ma, and S. Zhang, “On the global linear convergence of the
ADMM with multi-block variables,” arXiv:1408.4266.


