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Abstract— Planning the motion of bearings-only
sensors is critical for enabling accurate tracking of the
positions of moving targets. In this paper, we demon-
strate planning the observer’s motion over horizons
greater than one step for estimating an unknown
and varying number of indistinguishable, maneuver-
ing targets of interest using a probability hypothesis
density (PHD) filter, with a Rényi divergence reward
for selecting actions. We describe approximations to
make this approach computationally feasible, and we
propose using Monte Carlo tree search (MCTS) to
further reduce the cost. Finally, we present simulation
results showing that longer planning horizons reduce
the error in the estimates and that MCTS can reduce
the cost of planning without sacrificing the quality of
the estimates.

I. Introduction
An important application of autonomous robotics is

monitoring multiple maneuvering targets within a region
of interest, such as vehicles, animals, athletes, or pedes-
trians; see [1] for a review. A particularly interesting
case is when the observer carries a bearings-only sensor
with limited field-of-view (FoV) in order to estimate an
unknown, varying number of indistinguishable targets of
interest. This situation arises, e.g., in acoustic tracking of
ships [2] and in tracking the motion of pedestrians with
monocular cameras [3]. With a bearings-only sensor, the
motion of the observer significantly affects its ability to
correctly estimate targets’ states; therefore, planning its
motion can result in significant performance gains.

In this paper, the states of the targets are estimated
using a probability hypothesis density (PHD) particle
filter [4], [5]. Then, to plan the motion of the observer,
a receding horizon controller uses the Rényi divergence
between the predicted and future posterior PHDs within
the region of interest at the end of the planning horizon
as a heuristic reward [6]. Two different types of planners
are presented. The first exhaustively evaluates the reward
for every possible sequence of actions. The second uses
Monte Carlo tree search (MCTS) to reduce the cost of
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planning by evaluating fewer action sequences. We show
that longer planning horizons reduce the error in the
estimates and that MCTS can reduce the cost of planning
without sacrificing the quality of the estimates.

A. Related Work
To our knowledge, there are only a few works that

consider the problem of planning the motion of a single
observer in 2-D space carrying a bearings-only sensor for
estimating the positions of an unknown number of indis-
tinguishable, maneuvering targets. Particularly, Beard,
et al., demonstrated planning with a horizon of a single
action step and multiple observation steps using a GLMB
filter with a Cauchy–Schwarz divergence reward [7], while
Wolek, et al., demonstrated a basic “keep broadside”
behavior [2]. However, these approaches have not been
extended to planning horizons with multiple action steps.

Related is also literature which studies variations of
the estimation problem considered in this paper. For ex-
ample, Dames and Kumar considered localization of sta-
tionary targets using multiple bearings-only sensors [8],
while El-Fallah, et al., considered planning with a horizon
of 1 for reorienting bearings-only sensors for tracking
satellites [9]. Range-only sensors have limitations similar
to bearings-only sensors; one-step planning methods us-
ing range-only sensors have been investigated in [6], [10]–
[12]. Sensors providing position or range-and-bearing
measurements, such as radar, active sonar, or downward-
facing cameras on aircraft, are qualitatively different
since they provide an estimate of the targets’ positions
without requiring movement of the sensor. Research that
employs these sensors generally focuses on cases where
the noise or probability of detection depends on the
relative position of the target; works with these types
of sensors include [13]–[30]. Finally, other literature has
considered sensor planning for a known number of targets
or distinguishable targets, e.g. [31]–[36].

B. Contributions
To our knowledge, this is the first approach designed

to plan the motion of a single observer over horizons
greater than one action step for bearings-only estimation
of an unknown and varying number of indistinguishable,
maneuvering targets of interest. An additional contribu-
tion of this work is the development of approximations to
make this approach computationally feasible despite the
particle representation of the filter’s belief. We show that
planning with a horizon greater than one step reduces
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(a) Sensor FoV. Lengths
are not to scale.

(b) Detection probability for targets
within the FoV.

Fig. 1: Properties of the sensor.

the error in the target estimates, as described by the
optimal subpattern assignment (OSPA) metric. Finally,
we demonstrate that Monte Carlo tree search (MCTS)
can reduce the cost of planning without sacrificing the
quality of the target estimates.

II. Problem Description
Consider a single observer carrying a bearings-only

sensor with limited field-of-view (FoV), multiple maneu-
vering targets, and a fixed region of interest within a
two-dimensional world. The number of targets and their
states are unknown to the observer; the only information
available to the observer is its own state and imperfect
bearing measurements of the targets. The objective is to
minimize the error in its estimates of target positions
within the region of interest. At each time step, the
observer receives measurements from the sensor, updates
its belief of the target states, and chooses the trajectory
to travel until the next step.

Specifically, the state of a target consists of its 2-D
position, its 2-D velocity, and a label for its current mo-
tion model. The motion model is nearly constant velocity
or a coordinated turn to port or starboard, as described
in [37]. At each time step, the transition between models
is Markovian, using the probabilities from equation (30)
of [37]. On the other hand, the state 𝒐𝑘 of the observer
at step 𝑘 consists of its 2-D position and its heading.
During each time step, it travels exactly straight or along
a circular arc. The state of the observer is always known.
Finally, we assume that the sensor has a limited FoV,
with noise, clutter, and imperfect detection. For each
detected target, the measurement is the relative bearing,
as illustrated in Fig. 1a, with additive Gaussian noise.
The detection probability within the FoV is a function
of range, as illustrated by Fig. 1b. Clutter measurements
are uniform in bearing within the FoV, and the number
of clutter measurements is Poisson. Target measurements
and clutter measurements are independent.

III. Filter
In all planning algorithms proposed in this paper,

the observer uses the same probability hypothesis den-
sity (PHD) particle filter to estimate the target states.
The PHD filter implementation is based on [5], [37], with
a modification to handle the limited field-of-view (FoV),
described below. The filter assumes the target motion
model and sensor model described in Section II.

A. Persistent Cluster Assignments
A common way to perform measurement updates and

produce target estimates with a PHD filter is to sample
clusters of particles corresponding to measurements in
the current measurement set and then update those clus-
ters separately and report them as target estimates [5].
While this updates the PHD correctly, it does not pro-
duce estimates for targets which are undetected on the
current time step, such as targets outside the sensor’s
FoV. To resolve this, the clustering strategy for the filter
used here maintains assignments of particles to clusters
even for undetected targets, and those clusters continue
to be candidates for target estimates. Particles may be
reassigned, but only to new clusters for new measure-
ments. Following the clustering step, the particles are
updated as normal according to either the corresponding
measurement or the undetected case. In other words, this
change does not affect the PHD estimate; its only effect is
maintaining clusters for undetected targets and includ-
ing them in the set of estimated targets. The primary
limitation of this approach is that targets close to the
edge of the FoV can result in two clusters representing
a single target. However, this occurs rarely enough that
it’s not a significant issue in practice.

B. Target Estimates
Each cluster is assumed to approximately represent

a single target located at the weighted mean of the
particles, with probability of existence equal to the total
weight of the particles. Only clusters with probability of
existence of at least 1/2 are included in the set of target
estimates used for planning and evaluating the planners.

C. Target Births and Deaths
While targets do not actually appear or disappear

from existence, the PHD filter implementation assumes
birth and death models in order to handle previously-
unobserved and no-longer-relevant targets. The filter
handles births by adding particles in circular sec-
tors conditioned on measurements, assuming a Poisson-
distributed number of births, as described in [5]. While
this fails to account for targets which have not yet been
detected, for the problem considered, a target is unlikely
to reach the region of interest without being detected.
The filter assumes multi-Bernoulli target survival be-
tween time steps.

IV. Planning

At each time step, the observer uses the information
provided by the PHD filter to select an action. This
section starts by describing exhaustive search of every
possible sequence of actions over the planning horizon,
and it presents approximations to make this approach
computationally feasible. It then describes how Monte
Carlo tree search (MCTS) can be used to avoid evaluat-
ing all the possible action sequences.



A. Exhaustive Search
One approach for planning is to exhaustively eval-

uate every possible sequence of actions for the finite
planning horizon, using approximations to make this
computationally feasible, and then choose the first action
in the sequence which has the largest expected reward.
Following [6], [11], Rényi divergence is used as a heuristic
reward which describes the anticipated information gain
due to future measurements. When planning with a
horizon of 𝐻 steps into the future, the problem is

(𝒂𝑘, …) = argmax
(𝒂𝑘,…,𝒂𝑘+𝐻−1)

𝔼 [𝑅 (𝐷𝑘+𝐻|𝑘, 𝐷𝑘+𝐻|𝑘+𝐻)] ,

where 𝒂𝑘 denotes the action at time step 𝑘; 𝑍1∶𝑘 denotes
the measurement sets from step 1 to 𝑘; 𝑅 is Rényi di-
vergence with parameter 𝛼 = 1

2 ; 𝐷𝑘+𝐻|𝑘 is the predicted
PHD of the targets (conditioned on 𝑍1∶𝑘, 𝒐1∶𝑘) inside the
region of interest at the planning horizon; and 𝐷𝑘+𝐻|𝑘+𝐻
is the future posterior PHD of the targets (conditioned on
𝑍1∶𝑘+𝐻 , 𝒐1∶𝑘+𝐻) inside the region of interest at the plan-
ning horizon. The objective function is an expectation,
conditioned on the current belief from the filter, with
respect to the unknown future measurements 𝑍𝑘+1∶𝑘+𝐻 .

If the states of the particles approximating the PHD
are the same between 𝐷𝑘+𝐻|𝑘 and 𝐷𝑘+𝐻|𝑘+𝐻 , i.e. only
the weights differ, then the Rényi divergence can be
computed efficiently using only the weights [6], [11]. To
exploit this, the particle states can be preserved during
planning by skipping the birth of new particles, the elim-
ination of low-weight particles, and particle resampling.
While eliminating the birth step is an approximation, for
the problem of interest, the birth process has little effect
over the short planning horizons considered. Similarly,
the particle resampling step is dispensable, since particle
collapse is limited over the short horizons considered.

For the planner to be practical, further approximations
are necessary, as described below. Note, however, that
all of the approximations described in this section are
applied only during planning; the full PHD filter is
applied to the real measurements outside of planning.

1) Generating Measurements Based on the Ideal Mea-
surement Set Approximation: Figure 2a shows the true
conditional dependencies between the target states, mea-
surement sets, filter states, etc. Based on this diagram,
the expected reward for an action sequence could be
estimated using a Monte Carlo approach: sample sets
of target states according to the filter state, apply the
motion model to predict the target trajectories, sample
measurements using those predicted targets, perform the
filter updates using those measurements, and then aver-
age together the rewards computed for these samples.
Unfortunately, this approach is impractically expensive.

So, for each action sequence, the planner instead com-
putes a single estimate of 𝐷𝑘+𝐻|𝑘+𝐻 and uses the corre-
sponding Rényi divergence as a rough approximation of
the expected reward. For each filter update to the hori-
zon, the planner generates a measurement set based on
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Fig. 2: Bayesian networks illustrating conditional dependen-
cies. Tk is the target states at step 𝑘; Ok is the observer
state at step 𝑘; Bk is the filter state (containing 𝐷𝑘|𝑘)
approximating Tk, after the measurement update; Bk|j is the
filter state (containing 𝐷𝑘|𝑗) approximating Tk, by predicting
starting from Bj; Ak is the action at step 𝑘; and Zk is the
measurement set at step 𝑘.

the ideal measurement set approximation [6], [11]. Given
the target estimates and observer state, the generated
measurement set is the set of relative bearings to the
target estimates, for target estimates with probability
of detection greater than 1/2. Figure 2b illustrates the
conditional dependencies between the states of the filter
and the generated measurement sets. Each measurement
set is generated using the target estimates conditioned on
the previous measurement sets, since the measurement
sets are not independent between time steps.

2) Exploiting Known Association of Measurements to
Particle Clusters: It is possible to perform a full filter
update during planning, including sampling the parti-
tioning of particles into clusters. However, when planning
with generated measurements, the association between
each cluster of particles and the corresponding generated
measurement (or no measurement) is known. This is
exploited to reduce the cost of planning by avoiding
the partitioning step. Instead, each cluster of particles is
updated using the corresponding generated measurement
(or no measurement). This reduces the asymptotic cost
of the update from 𝑂 (|𝒫||𝑍|) to 𝑂 (|𝒫|), where |𝒫| is the
particle count and |𝑍| is the number of measurements.
For targets which are well-separated in bearing, this
approximation is indistinguishable from a full update,
while substantially reducing the computational cost.

3) Removing Unimportant Particles when Planning:
Many of the particles have little influence on the rankings
of the action sequences, so they are ignored during
planning to reduce the computational cost. In particular,
particles unassigned to clusters and clusters for which the
total predicted weight is less than 1/2 for each step to
the horizon are ignored, since they would be updated
the same way for all action sequences. Additionally, any
cluster for which only a very small fraction of the cluster’s
weight is in the region of interest for each step to the
horizon is ignored, since the particle weights in the region
of interest for this cluster are unlikely to change much.



B. Monte Carlo Tree Search
Monte Carlo tree search (MCTS) is an approach to

avoid the cost of exhaustively evaluating every possi-
ble action sequence. MCTS strategically selects which
actions to evaluate, based on previous evaluations, to
prioritize good actions without neglecting exploration.
Algorithm 1 describes the MCTS algorithm used here.
For this implementation, the exploration–exploitation
trade-off is handled using the polynomial upper confi-
dence tree (PUCT) heuristic [38]. The value of a node is
the mean of the rewards of its descendant leaves. After
performing the desired number of iterations, the action
with the largest value is chosen. Aside from the strategy
for expanding the tree and updating the nodes’ values,
all of the other aspects of the planner are the same as
the exhaustive search approach.

Algorithm 1: Monte Carlo Tree Search (MCTS).
function mcts is

input : Observer state 𝒐𝑘, PHD filter state ℬ𝑘|𝑘.
output : Selected action.
ℬ̃𝑘|𝑘 ← RemoveUnimportant(ℬ𝑘|𝑘), Sec. IV-A.3.
ℬ̃𝑘∶𝑘+𝐻|𝑘 ← Predict(ℬ̃𝑘|𝑘), Sec. IV-A.
ℬ̃𝑘∶𝑘+𝐻|𝑘 ← RemoveMoreUnimportant(ℬ̃𝑘∶𝑘+𝐻|𝑘),

Sec. IV-A.3.
𝒯 ← initialize MCTS tree with (𝒐𝑘, ℬ̃𝑘|𝑘).
foreach iteration do

for 𝑖 in 𝑘 + 1 ∶ 𝑘 + 𝐻 do
𝒂𝑖−1 ← SelectActionPUCT(𝒯).
if this will be a new node then

𝒐𝑖 ← UpdateObserver(𝒐𝑖−1, 𝒂𝑖−1), Sec. II.
ℬ̃𝑖|𝑖−1 ← PredictSameStates(ℬ̃𝑖−1|𝑖−1, ℬ̃𝑖−1|𝑘),

Sec. IV-A.
𝑍𝑖 ← Measurements(ℬ̃𝑖|𝑖−1, 𝒐𝑖), Sec. IV-A.1.
ℬ̃𝑖|𝑖 ← Update(ℬ̃𝑖|𝑖−1, 𝒐𝑖, 𝑍𝑖), Sec. IV-A.2.
𝒯 ← AddNode(𝒯, ℬ̃𝑖−1|𝑖−1, 𝒂𝑖−1, 𝒐𝑖, ℬ̃𝑖|𝑖).

else
(𝒐𝑖, ℬ̃𝑖|𝑖) ← GetNode(𝒯, ℬ̃𝑖−1|𝑖−1, 𝒂𝑖−1).

end if
end for
𝑟 ← RényiDivergence(ℬ̃𝑘+𝐻|𝑘, ℬ̃𝑘+𝐻|𝑘+𝐻), Sec. IV-A.
Update value of the node and its ancestors with 𝑟.

end foreach
return Action for the child of the root node with the

largest value.
end

V. Results and Discussion
For comparison, a baseline policy of random actions,

the exhaustive search planner with horizon 1 (which
is most similar to existing literature, e.g. [6]), and the
longer-horizon planners proposed in this paper are sim-
ulated in randomly-generated scenarios containing 3, 5,
10, or 15 targets. Note that the PHD filter makes poor
estimates when targets are aligned in bearing, so it
should not be used for very high target densities. For
each target count, the trajectories of the targets are
sampled to form 400 scenarios of 150 time steps each.
Figure 3 shows some examples. The planners are used to
select the observer’s actions; the speed of the observer is

(a) Example with 3 targets (b) Example with 5 targets

(c) Example with 10 targets (d) Example with 15 targets

Fig. 3: Trajectories of the targets for some example scenarios.
Small circular markers indicate the positions of the targets.
Triangular markers show the positions and headings of the
targets every 30 time steps, and text labels show the corre-
sponding time indices.

6 m/s, and its angular velocity is one of −4.5 °/s, 0 °/s, or
4.5 °/s. The pseudorandom number generators are seeded
independently between scenarios, but the planners are
applied to the same scenarios so they can be compared
in a pairwise fashion. The initial states of the targets
are sampled in such a way that the targets are likely to
enter the region of interest, and then the motions of the
targets are sampled according to Section II. The time
step is 10 s. The region of interest is a circle centered at
the origin with radius 2 km.

Measurements are simulated according to Section II.
The probability of detection is given by 𝑝D (𝑟, 𝜃) = 1 −
(1 + e−((𝑟/𝑟ref)

2−3))
−1

if 30° ≤|𝜃| ≤ 150°, or 0 otherwise,
where 𝑟ref = 4000 m, 𝑟 is the range, and 𝜃 is the relative
bearing in [−180°, 180°). The standard deviation of the
noise in bearing measurements is 0.5°. The mean number
of clutter measurements per step is 1.

For the birth process, the filter assumes 0.01 expected
births per step, a maximum range of 8000 m, a beta
distribution with parameters 𝛼 = 6 and 𝛽 = 5 for
the speed divided by 10 m/s, a uniformly-distributed
heading, and a motion model distribution equal to the
stationary distribution of the Markov transition process.
The filter assumes a target survival probability of 0.98.

A. Computational Cost
First, the planners are compared by computational

cost. The cost of planning is dominated by the predic-
tions, the filter updates using the generated measure-



TABLE I: Number of times each expensive planning step
is performed per time step. “P” refers to predictions, “F”
refers to filter updates, and “R” refers to Rényi divergence
calculations. For exhaustive search, the action sequences are
arranged into a tree to avoid redundant filter updates. For
MCTS, the number of filter updates is not constant, since it
depends on the action selections while expanding the tree.

Method P F R
Exhaustive, horizon 1 1 3 3
Exhaustive, horizon 2 2 12 9
Exhaustive, horizon 3 3 39 27
MCTS, horizon 4, 9 iterations 4 ∈ [24, 30] 9

TABLE II: Geometric mean over all scenarios for each target
count (specified in the column heading) of the ratio of the
mean runtime during planning for exhaustive search to that
for MCTS with a horizon of 4 and 9 iterations.

Geometric mean of ratios
Method 3 5 10 15
Exhaustive, horizon 1 0.15 0.15 0.16 0.16
Exhaustive, horizon 2 0.45 0.45 0.45 0.45
Exhaustive, horizon 3 1.13 1.15 1.09 1.19

ments, and the Rényi divergence evaluations, since these
are only portions which operate on every particle. Each of
these steps has asymptotic cost 𝑂(number of particles),
although the number of particles is larger for the predic-
tions, since some particles are discarded after computing
the predictions, as described in Section IV-A.3. Table I
lists the number of times these steps are performed.
It shows that the cost of exhaustive search increases
exponentially with the planning horizon. To compare
the overall costs more directly, Table II shows the ratio
of the runtime for each exhaustive search planner to
the runtime for MCTS with a planning horizon of 4
and 9 iterations. The runtime of the MCTS approach
is noticeably less than the runtime for exhaustive search
with a horizon of 3.

B. OSPA Error
This section compares the quality of the estimated

target positions for each planner, using the optimal
subpattern assignment (OSPA) metric [39] between the
subset of targets within the region of interest and the
subset of target estimates within the region of interest.
The parameters for the OSPA metric are 𝑝 = 2 and 𝑐 =
1 km, and the distance function is the Euclidean distance.
Figure 4 illustrates the empirical distribution of the mean
OSPA error for each planning approach. It shows that
exhaustive search with a horizon of 1 is actually worse
than purely random actions, while planning over longer
horizons is beneficial.

The horizon 1 planner performs poorly because it
tends to myopically select actions which maximize the
number of targets in the field-of-view (FoV) on the
next time step; Fig. 5 shows that it maintains a large
fraction of the targets of interest in the FoV. In contrast,
the longer-horizon planners presented in this work more

(a) 3 targets (b) 5 targets

(c) 10 targets (d) 15 targets

Fig. 4: Violin plots of the OSPA distance averaged over all
time steps in each scenario. The circular markers indicate the
medians over scenarios, and the error bars indicate 90% two-
sided or 95% one-sided confidence intervals.

frequently choose actions with targets outside the FoV in
exchange for better positioning the sensor for later time
steps in order to obtain a better overall reward.

The remaining figures provide a pairwise comparison of
the MCTS approach with a horizon of 4 and 9 iterations
to the other methods. Figure 6 illustrates the empirical
CDF of the pairwise difference between the mean OSPA
error for each planner and that for MCTS. The curves
show that the error for the MCTS approach is less than
that for random actions and for exhaustive search with
a horizon of 1 or 2, and it’s no worse than the error
for exhaustive search with a horizon of 3. There are two
points on each curve to note in particular.

One point of interest is the vertical intercept; this is
the fraction of the scenarios for which the given planner
has lower error than MCTS. For random actions, this
value is 0.24 to 0.32, so MCTS is better approximately
68% to 76% of the time. Similarly, MCTS is better than
exhaustive search with a horizon of 1 approximately 81%
to 84% of the time and better than exhaustive search
with a horizon of 2 approximately 59% to 64% of the
time. For exhaustive search with a horizon of 3, the only
significant difference from 50% is for 3 targets, for which
MCTS is slightly better.

The other point of interest is horizontal intercept;
this is the median difference in mean OSPA error for
the planner from that for MCTS. These values are also
summarized in Fig. 7, which shows that the median
difference for random actions is 44 m to 48 m, that for



(a) 3 targets (b) 5 targets

(c) 10 targets (d) 15 targets

Fig. 5: Violin plots of the mean (over the time steps in the
scenario) fraction of the targets of interest which were in the
field-of-view. The circular markers indicate the medians over
scenarios, and the error bars indicate 90% two-sided or 95%
one-sided confidence intervals.

(a) 3 targets (b) 5 targets

(c) 10 targets (d) 15 targets

Fig. 6: Emprical CDF (where each scenario is a sample) of
the difference in mean (over time steps in the scenario) OSPA
error relative to MCTS with a horizon of 4 and 9 iterations.
The shaded regions indicate the pointwise Wilson score 90%
two-sided or 95% one-sided confidence intervals.

(a) 3 targets (b) 5 targets

(c) 10 targets (d) 15 targets

Fig. 7: Violin plots of the difference in mean OSPA distance
from that for MCTS with horizon 4 and 9 iterations. The cir-
cular markers show the medians over scenarios; the error bars
show 90% two-sided or 95% one-sided confidence intervals.

exhaustive search with horizon 1 is 59 m to 77 m, and
that for exhaustive search with horizon 2 is 18 m to
24 m. In all cases, this is significantly greater than zero,
so MCTS is better than random actions or exhaustive
search with a horizon of 1 or 2. For exhaustive search
with a horizon of 3, there is no significant difference
except for 3 targets, for which MCTS is slightly better.

Based on these results, for the lowest overall OSPA
error, exhaustive search with a horizon of 3 or the MCTS
approach should be chosen. Since the MCTS approach
has lower computational cost without increased OSPA
error, it should be preferred.

VI. Conclusion
This paper demonstrates planning the motion of an

observer over horizons greater than one step using a
Rényi divergence reward and a PHD particle filter for
bearings-only estimation of an unknown and varying
number of indistinguishable, maneuvering targets of in-
terest. This work may also be applicable to control of
range-only sensors, which have similar limitations. It
describes approximations to make this approach com-
putationally feasible despite the particle representation
of the filter’s belief. It presents simulation results which
show that planning with a horizon greater than one step
reduces the OSPA error in the target estimates. Finally,
it demonstrates that Monte Carlo tree search can reduce
the cost of planning compared to exhaustive search
without sacrificing the quality of the target estimates.
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