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Abstract— In this paper, we consider a network of agents
that select actions in order to minimize an objective function
of which they only have local observations and subject to a set
of constraints. The objective function and the constraints can
vary arbitrarily over time. The selection of actions, also called a
strategy, is causal and decentralized, i.e., the dynamical system
that determines the actions of a given agent depends only on
the constraints at the current time and on its own actions and
those of its neighbors. We propose a decentralized saddle point
algorithm to select the actions and we show that the network fit
and regret are sublinear with respect to the time horizon of the
problem. Specifically, we define the global fit of a strategy as a
vector that integrates over time the global constraint violations
as seen by a given node. The fit is a performance loss associated
with online operation as opposed to offline clairvoyant operation
which can always select an action, if one exists, that satisfies
the constraints at all times. If this fit grows sublinearly with the
time horizon it suggests that the strategy approaches the feasible
set of actions. Likewise, we define the regret of a strategy as
the difference between its accumulated cost and that of the
best fixed action that one could select knowing beforehand the
time evolution of the objective function. Numerical examples
support the theoretical conclusions.

I. INTRODUCTION

Distributed optimization has been used to address a wide
range of problems, from resource allocation in communi-
cation [1], to multi-robot teams [2]–[4] and the internet of
things [5], [6]. In these problems, the agents try to optimize a
common objective function of which they only have a partial
observation that depends typically on the data they collect
individually while satisfying constraints. Several methods,
exist to solve these optimization problems, notably the saddle
point algorithm by Arrow and Hurwicz [7], which has the
advantage of admitting a distributed implementation [8]–
[11]. These algorithms consider the particular case where the
objective that the agents aim to minimize and the constraints
are static over time. Methods to address problems where
the objectives and constraints change over time according
to a stationary probability have also been established, see
eg. [12]. In this case, the goal is to minimize the expec-
tation of the objective while satisfying the constraints in
average. When the problem is unconstrained, centralized and
decentralized implementations of stochastic gradient descent
converge to such solutions.
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In this paper, we consider problems in which the costs and
constraints can vary arbitrarily over time. This is the problem
considered in online optimization, where the optimality is
formulated in terms of regret [13], [14] whereby agents select
online actions that result in a cost chosen by nature. The
cost functions are revealed to the agents after the actions
are selected and these values are used to adapt the future
strategy. Regret for a network is defined as the difference
between the total cost across the network incurred by each
agent as compared to the cost of the optimal centralized
clairvoyant solution. Likewise, the fit of a strategy [15], [16]
is a vector that integrates over time the constraint violation
incurred by each agent. In that sense the fit is a performance
loss associated with online operation as opposed to offline
clairvoyant operation which can always select an action that
satisfies the constraints at all times, if such action exists. The
network fit is a vector that contains the time integrals of the
constraints of all the agents evaluated across the trajectory
of a specific agent. Having small global fit means that the
agent is able to satisfy the constraints of every other agent,
and thus if it is placed in a different position in the network
its performance is maintained.

The problem of distributed online constrained convex
optimization has been studied in [17]–[19]. Continuous time
approaches have advantages in the context of distributed
control systems whenever signals are inherently continuous.
Moreover, discrete-time approaches can be thought of as
the result of discretizing continuous-time dynamics. The
work in [17], [18] considers unconstrained settings where
agents minimize a time-varying convex loss, whereas here
we consider constrained problems. Constrained problems
have been considered in [19] using a Saddle Point algorithm
establishing sublinear bounds on the network disagreement
and on the regret achieved by the strategy. The main differ-
ence with [19] is that instead of imposing exact consensus
among agents, here we allow for small disagreement. This
idea has been used for unconstrained problems in [20]. With
this modification, we can establish that the trajectories that
arise from the distributed online saddle point dynamics are
such that the disagreement of the agents, the regret and the
fit are bounded by sublinear functions of the time horizon
(Section IV). The latter is the main contribution of the paper
since in [19] there are no guarantees related to the constraint
violation. This suggests that our proposed algorithm achieves
consensus, feasibility and optimality as the time goes to
infinity. This result generalizes the result in [15] where a
centralized saddle point algorithm achieves fit and regret that
are bounded by sublinear functions of the time horizon.

We also illustrate our algorithm on a problem involving



a team of robots driving through an urban environment to
perform real-time texture classification for the purpose of
mapping and object recognition. We show that the team of
robots succeds in training a common classifier that allows
them to distinguish between grass and pavement images even
when some of the agents have only observed one of the
classes.

II. CONSTRAINED ONLINE LEARNING IN NETWORKS

We consider a group of N agents linked by an undirected
connected graph G = {V, E} where V = {1, . . . , N} is a set
of nodes and E is a set of edges so that (i, j) ∈ E means
that i and j are connected to each other. The set Ni := {j :
(i, j) ∈ E} contains all nodes that are connected to i and
is called the neighborhood of i. Note that since the graph is
undirected, node j is in the neighborhood of i if and only if
node i is in the neighborhood of j.

We are interested in situations where the agents in G have
access to arbitrarily time varying local constraints and local
objective functions and continuously select actions that are
good not only for their local constraints and costs but for the
local constraints and costs of other agents. To explain this
formally, let t ∈ R+ be a continuous time index, fi(t, ·) :
Rn → Rmi be a set of mi convex constraints at agent i and
f0i(t, ·) : Rn → R be a local convex cost incurred at node i.
A local goal of node i is to select an action xi ∈ X ⊆ Rn that
satisfies local constraints fi(t,xi) � 0 across a time interval
[0, T ] while minimizing the cost f0i(t,xi) integrated over the
same interval. The latter corresponds to situations in which
each of the agents is acting independently since the optimal
action of i depends on its local cost and constraints, and not
on those of other agents. Instead, here we are interested in
situations where the actions of agents are coordinated, so that
an action xi of agent i can affect the costs and constraints of
other agents. This results in a global formulation in which
the optimal action of each agent x∗i is defined as the one
that satisfies the constraints of all agents and minimizes the
integral of the sum cost,

x∗i := argmin
xi∈X

∫ T

0

=

N∑
j=1

f0j(t,xi) dt,

s.t. fj(t,xi) � 0, ∀ j and t ∈ [0, T ]. (1)

We say that the problem in (1) is global because the action
xi is evaluated at the constraint and costs of all nodes. This
readily implies that x∗i = x∗j and that there is a single global
action that is optimal for all nodes. These problems arise
when local functions are related to a common variable. E.g.,
the costs and constraints can represent local observations of
a parameter to be estimated [21] or local observations and
costs of a plant to be controlled [22]. Problems having the
form of (1) also arise in large scale optimization where costs
and constraints are not acquired locally but are distributed
over several servers to reduce computation and storage [23].

If the functions f0i(t, ·) and fi(t, ·) are available for all
times t ∈ [0, T ], solving (1) reduces to solving a distributed
convex optimization problem for which a number of standard

algorithms are applicable; see e.g., [24], [25]. In this paper
we consider problems in which the constraints fi(t, ·) and
costs f0i(t, ·) are arbitrary and observed causally and locally
by node i. In this setting it makes sense to consider time
varying strategies xi(t) that adapt the action of agent i to
the information that is revealed at time t. In this context the
optimal argument in (1) is a centralized clairvoyant action
that would be chosen when agents have knowledge of the
future evolution of the system at time t = 0. The appropriate
figures of merit in this case are the notions of regret [13],
[26], [27] and fit [15] that we generalize to network settings
in the following section. Before proceeding with definitions
of network regret and fit, note that for the definition in (1)
to be valid the functions f0i(t,x) have to be integrable with
respect to the time variable t. In subsequent definitions and
analysis we further require the constraints fi for all i ∈ V , to
be integrable, convex and Lipschitz continuous with respect
to x for all times t. We formally state these assumptions
next.

Assumption 1. Let X be a compact convex set and the
functions f0i(t,x) and fi(t,x) be integrable with respect to
t and convex with respect to x ∈ X for all t ∈ [0, T ]. We
further assume that the cost and constraints are Lipschitz
continuous over X with respective constants L0 > 0 and
Lf > 0. I.e., for any x,y ∈ X and all t ∈ [0, T ] the cost
functions satisfy∣∣f0i(t,x)− f0i(t,y)

∣∣ ≤ L0

∥∥x− y
∥∥, (2)

and the constraint functions satisfy∣∣fkj(t,x)− fkj(t,y)
∣∣ ≤ Lf∥∥x− y

∥∥, (3)

where fkj(t, ·) denotes the jth component of the vector
valued constraint function fk(t, ·).

We remark that integrability with respect to t is a weak
condition. We do not require differentiability, not even
continuity. This entails a fundamental difference with time
varying optimization problems that strive to track a time
varying optimal argument under the assumption of smooth
time varying costs and constraints [21], [28], [29]. The goal
here is to design an algorithm that can adapt to unexpected
changes in the system, including, indeed, most importantly,
to those that arise because of discontinuities in the cost and
constraint functions. Another requirement for x∗i to be well
defined is existence of an action x† ∈ X that satisfies the
constraints at all times and all nodes as we formally state
next.

Assumption 2. There exists an action x† ∈ X that satisfies
the constraints of all agents for all times t ∈ [0, T ],

fi(t,x
†) � 0, ∀ i and t ∈ [0, T ]. (4)

We say that X † :=
{
x† ∈ X : fi(t,x

†) � 0,∀i and t ∈ [0, T ].
}

is the set of feasible actions.

We require as well that minimum of the objective function
does not become progressively smaller with time so that a
uniform bound K holds for all times t ∈ [0, T ].



Assumption 3. There exists K > 0 independent of the time
horizon T such that for all t ∈ [0, T ] it holds that

f0(t,x∗)− min
x∈XN

f0(t,x) ≤ K, (5)

where x∗ is the solution to the problem (1).

The existence of the bound in (5) is a mild requierement.
Since the function f0(t,x) is convex, for any time t it is
lower bounded for compact set of actions X . The only re-
striction imposed is that minx∈XN f0(t,x) does not become
progressively smaller with time so that a uniform bound K
holds for all times t ∈ [0, T ].

A. Network Regret and Network Fit

To evaluate the cost performance of such trajectories we
define the notions of network regret and network fit. Begin
then by considering a trajectory xi(t) chosen by agent i
and the total accumulated cost

∫ T
0
f0j(t,xi(t))dt that this

trajectory incurs for a possibly different agent j. We define
the regret RiT j as the difference of this accumulated cost
relative to the corresponding cost that would be incurred by
the optimal trajectory x∗i of (1),

RiT j :=

∫ T

0

f0j(t,xi(t)) dt−
∫ T

0

f0j(t,x
∗
i ) dt. (6)

Likewise, we consider the accumulation
∫ T
0
fj(t,xi(t))dt of

constraint of agent j incurred by the trajectory of agent i.
The fit F iT j is defined as the comparison of this constraint
accumulation relative to the corresponding constraint accu-
mulation of the optimal trajectory x∗i

F iT j :=

∫ T

0

fj(t,xi(t)) dt−
∫ T

0

fj(t,x
∗
i ) dt. (7)

The action x∗i can be considered as an offline reference that
would be chosen by an entity that is clairvoyant, because
it observes the future, and omniscient, because it observes
the costs and constraints of all nodes. Our objective is to
consider trajectories that are chosen online by agents that
are causal, because they observe the past, and local, because
they observe their local costs and exchange information with
neighboring nodes only. In this context regret and fit can
be interpreted as performance losses associated with online
causal and local operation as opposed to offline clairvoyant
and omniscient operation. If F iT j is positive we are in a
situation in which, had the constraints of all agents be known
beforehand, we could have selected an action x† to satisfy
all constraints.

The fit measures how far the trajectory x(t) is from
achieving that goal. Analogously, if the regret RiT j is large
we are in a situation in which prior knowledge of the
objective functions and constraints would had resulted in
the selection of a strategy x∗ that achieves much better
performance than the one achieved by xi(t). In that sense
RiT j indicates how much we regret not having had that
information a priori.

A good learning strategy is one that achieves small regret
and fit as that would be an indication that the trajectory

x(t) approaches x∗. Notice however that since the objective
function and the constraints are integrated over a time
horizon T , it is natural to expect the cost and constraints to
grow linearly with T . Thus, having regret and fit that grow
at a sublinear rate is sufficient indication of a good learning
strategy. This intuition motivates the following definitions of
feasible and optimal trajectories.

Definition 1. We define an environment as a set of con-
straints fj : R × Rn → Rmj and costs f0j : R × Rn → R
for all j ∈ V . For a trajectory xi(t) we consider the regret
and fit definitions in (6) and (7) and further define the
sum regret RiT :=

∑
j∈V RiT j and the network wide fit

F jT = [F j>T1 , . . . ,F
j>
TN ]>. We say that:

Feasibility. The trajectories are feasible in the environment
if all the local fits F iT with i ∈ V grow sublinearly with T .
I.e., there exist a function h(T ) with lim supT→∞ h(T )/T =
0 and a constant vector Cf such that for all times T it holds,

F iT :=

∫ T

0

f(t,xi(t)) dt ≤ Cfh(T ). (8)

Optimality. The trajectories are optimal in the environment
if all regrets RiT grow sublinearlly for all i ∈ V and T . I.e.
there exist a function h(T ) with lim supT→∞ h(T )/T = 0
and a constant C such that for all times T it holds,

RiT :=

∫ T

0

f0(t,xi(t)) dt−
∫ T

0

f0(t,x∗) dt ≤ Ch(T ). (9)

In the next section we develop the details of a distributed
and online version of the Arrow-Hurwicz algorithm, such
that its generated trajectories are feasible and optimal in the
sense of Definition 1. The latter is formally stated and proved
in Section IV along with an intermediate result that claims
that the disagreement across agents is sublinear with respect
to the time horizon, hence suggesting consensus.

III. DISTRIBUTED ONLINE SADDLE POINT

Problem (1) can be solved in a distributed manner with
a variety of methods, one of which is the saddle point
algorithm of Arrow and Hurwicz [7], which in fact admits
a distributed implementation. Since each agent i ∈ V has
access only to the local cost and constraints, a more natural
representation of the problem (1) is one where each agent
selects a local decision vector xi ∈ Rn. Nodes then try
to achieve the minimum of their local objective functions
f0i(t,xi) while satisfying the local constraints fi(t,xi) � 0
and keeping their variables equal to the variables xj of
neighboring nodes j ∈ Ni. By defining x = [x>1 , . . . ,x

>
N ]>,

this formulation can be written as

x∗ := argmin
x∈XN

∫ T

0

f0(t,x) dt = argmin
x∈XN

∫ T

0

N∑
i=1

f0i(t,xi) dt

s.t. fi(t,xi) � 0,∀t ∈ [0, T ],∀i ∈ V, (10)
xi = xj ,∀i ∈ V, j ∈ Ni.



With the assumption that the network is connected, the
constraints xi = xj for all i and j ∈ Ni imply that (1)
and (10) are equivalent. We formalize this assumption next.

Assumption 4. The network is connected with diameter D,
i.e., the shortest distance between the two most distant nodes
in the network is D.

In this work we aim to extend the saddle point algorithm
to control the growth of regret and fit. In doing so it is
convenient to relax the consensus constraints xi = xj in (10)
to allow for some controlled disagreement. We accomplish
this by defining the set of constraints

gij(xi,xj) = ‖xi − xj‖2 − γ ≤ 0, (11)

where γ is a positive constant limiting how much constraint
violation is allowed. Notice that the parameter γ could
be set to be arbitrarily small. The advantage of using a
controlled disagreement is that it allows for agents to achieve
a good global performance without damaging excessively
the local performance, which in some applications might
be important as well. By allowing larger values of γ, we
allow more disagreement and therefore we prioritize the local
performance, whereas by making γ closer to zero the goal
is set in the centralized performance. The same relaxation is
considered in [20] in the case of unconstrained distributed
optimization. With this modification, we can construct the
following time varying Lagrangian

L(t,x,λ,µ) = f0(t,x) +

N∑
i=1

(
λ>i fi(t,xi) + µ>i gi(x)

)
,

(12)
where λi ∈ Rmi

+ for i = 1 . . . N and µi ∈ R|Ni|
+

for i = 1 . . . N are the Lagrange multipliers and where
gi(x) ∈ R|Ni| is the vector with components gij(xi,xj)
for all j ∈ Ni. Saddle point methods rely on the fact that
for a constrained convex optimization problem, a pair is a
primal-dual solution if and only if it is a saddle point of the
Lagrangian associated with the problem, see e.g. [30]. This is
the case in problem (10) since f0(·,x), f(·,x) and g(·,x) are
convex (c.f. Assumption 1). In addition, because λ,µ � 0,
the Lagrangian is convex with respect to x and therefore
the subgradient with respect to x exists for all time t ≥ 0,
let us denote it by Lx(t,x,λ,µ). The Lagrangian is linear
with respect to λ and µ and therefore its partial derivatives
with respect to these variables exist. Let us denote them by
Lλ(t,x,λ,µ) and Lµ(t,x,λ,µ) respectively. The actions x
are updated – as in the classic Arrow-Hurwicz algorithm –
by following the negative subgradient of the Lagrangian with
respect to x

ẋ = −Lx(t,x,λ,µ)

= −f0,x(t,x)−
N∑
i=1

fi,x(t,xi)
>λi −

N∑
i=1

∑
j∈Ni

µijgij,x(x),

(13)

where Ni is the set of neighbors of node i. The primal update
interprets the constraints as potentials with corresponding

weights λ and µ and descends along a linear combination
of the gradients of said potentials. The multipliers are then
updated by following the subgradient of the Lagrangian with
respect to them

λ̇ = Lλ(t,x,λ,µ) = f(x), (14a)

µ̇ = Lµ(t,x,λ,µ) = g(x). (14b)

The intuition behind the latter update is that if a constraint
is violated, for instance f1,1(x) > 0 the corresponding mul-
tiplier, λ1,1 will be increased, thus augmenting the relative
weight of this potential in the linear combination in (13).
Which in turn pushes the action towards satisfying said
constraint. On the other hand, if the constraint is satisfied,
the weight of that potential will be reduced, thus making
the direction of the gradient of the function less important in
the weighted linear combination. Observe that the multipliers
need to remain positive at all time to ensure the convexity of
the Lagrangian with respect to x, yet if a multiplier takes the
value zero and its corresponding constraint is satisfied, the
previous update turns the multiplier negative. To avoid this
issue, we will require a projection over the positive orthant.
We formalize this idea next, after making the observation that
the update (13)–(14) is indeed distributed. To see this, write
the Lagrangian as a sum of the following local Lagrangians

Li(t,x,λ,µ) = f i0(t,xi) + λ>i fi(t,xi)

+
∑
j∈Ni

µij

(
‖xi − xj‖2 − γ

)
, (15)

where to compute each local Lagrangian, agent i needs only
information regarding its variables and those of its neighbors.
Then, each agent can compute locally the gradient of the
Lagrangian with respect to its local variable xi and perform
the update described in (13)–(14), with the caveat that to
ensure that the multipliers are always positive we need to
consider a projected dynamical system. We formalize this
idea next.

Definition 2 (Projection of a vector at a point). Let K ⊂
Rn be a compact convex set. Then, for any y ∈ K and
v ∈ Rn, we defined the projection of v over the set K at
the point y as

ΠK [y,v] = lim
ξ→0+

PK(y + ξv)− y

ξ
, (16)

where the standard projection PK(z) = argminy∈K ‖y−z‖2
is always well defined because K is convex.

The intuition behind the projection is that, if the point y is
in the interior of the set K then the projection of the vector
v is the vector itself. In cases where y is in the boundary
of the set K, the projection of v is its component tangental
to the boundary of K. With this definition at hand, and by
defining the gain of the controller to be ε > 0 we define the
distributed online saddle point controller as follows. Each
agent updates its action by following the negative subgradient



of the Lagrangian with respect to its local copy of the action
xi

ẋi = ΠX [xi,−εLxi(t,x,λ,µ)] , (17)

Likewise, the multipliers λi and µi are updated by ascending
along the direction of the gradient of the Lagrangian with
respect to λ and µ respectively, i.e.,

λ̇i = Π+ [λi, εLλi
(t,x,λ,µ)] , (18a)

µ̇ij = Π+

[
µij , εLµij

(t,x,λ,µ)
]
. (18b)

The three gradients can be computed in a distributed fashion
since they only depend on each agent’s own variables and
those of their neighbors. In [15] it was shown that in the
centralized case, a saddle point algorithm akin to the one
described by (17)–(18) achieves feasible and strongly optimal
trajectories, i.e., fit bounded by a sublinear function of the
time horizon and regret bounded by function that is constant
with respect to the time horizon. In this work we show that
the distributed version of said algorithm (c.f. (17) and (18))
achieves feasible and optimal trajectories in the sense of
Definition 1. Moreover, the network disagreement is bounded
by a function that is sublinear with respect to the time
horizon. These results are the subject of the next section.

IV. FEASIBLE AND OPTIMAL TRAJECTORIES

Let us consider an energy-like function which will be used
in subsequent analysis. Let x̃ ∈ XN , λ̃ ∈ R

∑
imi

+ , µ̃ ∈
R

∑
i |Ni|

+ , where we denote by |Ni| the cardinality of the set
of neighbors of node i, and define the function

Vx̃,λ̃,µ̃(x,λ,µ) =
1

2

(
‖x− x̃‖2 + ‖λ− λ̃‖2 + ‖µ− µ̃‖2

)
.

(19)
By considering the time derivative of the previous function
along the dynamics (17)–(18) we establish that the integral of
the difference of the Lagrangian evaluated at (x(t), λ̃, µ̃) and
the Lagrangian evaluated at (x̃,λ(t),µ(t)) is bounded by a
constant independent of the time horizon T . This idea is the
key to establish that the saddle point dynamics yield feasible
and optimal trajectories. We first claim that the saddle point
dynamics (17)–(18) yields sublinear network disagreement
for all T > 0. We formalize this result in Proposition 1.

Proposition 1 (Sublinear Network Disagreement). Let
Assumptions 1–4 hold. Then for any T ≥ 0 the solutions
of the dynamical system (17)–(18) are such that the network
disagreement is sublinear with respect to T . In particular
for λ(0) = 0 and µ(0) = 0, for any i, j ∈ V we have that∫ T

0

‖xi(t)− xj(t)‖ dt

≤ D
√

(K + γ)T +
1

2ε

(
1 + ‖x∗ − x(0)‖2

)
,

(20)

where D is the network diameter defined in Assumption 4.

Proof. See [31]. �

The sublinear network disagreement that the previous
proposition establishes suggests that the solution of the

distributed implementation of the algorithm is not different
than the centralized. Since for the latter results of sublinear
fit and regret have been established [15] it is unsurprising that
the same holds here. The latter means that the trajectories
that arise from the Distributed Online Saddle Point Dynamics
(17)–(18) are feasible and optimal in the sense of definition
1. We formalize these results in the following theorem.

Theorem 1 (Feasibility). Let Assumptions 1–4 hold. Then
for any T ≥ 0 the solutions of the dynamical system (17)–
(18), with ε > 1/2, are such that the k-th component of
the local fit F iT j for any i, j ∈ V is bounded by

(
F iT j

)
k
≤

O(
√
T ). Likewise, the local regret RiT for any i ∈ V is

bounded by a function of O(
√
T ).

Proof. See [31]. �

The previous theorem establishes that the local fit achieved
by a system that follows saddle point dynamics (17)–(18) is
bounded by a function whose rate of growth is sublinear,
thus suggesting vanishing penalties. The fact that the fit
grows sublinearly is equivalent to achieving trajectories that
are feasible in the sense of Definition 1. Likewise, we
have established that the regret is sublinear and thus, the
trajectories have in average the same cost that solution of the
centralized clairvoyant solution (10). Hence, they are optimal
in the sense of Definition 1.In the next section we present
numerical examples that support the theoretical conclusions.

V. NUMERICAL EXAMPLES

In this section we consider a team of N robots tasked
with classifying in real time and in a distributed manner the
different objects and terrains that compose the environment
in which they are deployed. This problem, has been studied
in [2], although the method presented here is different. Each
robot has only access to information about the environment
based on the path it has traversed and the images gathered.
Therefore, its local information may not be enough to achieve
the task of classification since the information gathered may
omit regions of the feature space that are crucial. See for
instance Figure 1 where we depict random trajectories of
twenty agents driving around an intersection. When the agent
is on the pavement i.e., the absolute value of its horizontal or
vertical coordinate is less than five, then it observes pavement
images. On the other hand, outside this region it observes
grass. As it can be observed in that figure only some of
the agents visit both regions and the interest is that the
whole team can learn a common classifier. The advantage
of learning such classifier is that a robot can identify if
it is on grass even if it has not seen grass in the training
process. In particular we consider a problem in which each
robot receives features zi(t) ∈ Rn from the scene and
corresponding labels yi(t) ∈ {−1, 1} depending on whether
the terrain is grass or pavement. The details of the feature
extraction from image data is provided in Section V-A. The
common objective of the agents can be formulated as training
a common linear classifier x ∈ Rn that minimizes a loss
function. The value of the loss function is small when the
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Fig. 1: Example of 20 robots driving randomly at an intersection.
When the robot is on the street it is observing pavement images,
whereas when it outside of the intersection it has acces to grass
images.

classification is accurate and it takes large values in the
opposite case. In particular, we consider logistic regression

fi(t,x) = log
(

1 + e−yi(t)x
>zi(t)

)
. (21)

The classifier is designed so that the prediction is defined by
the sign of the inner product between the classifier x and
the feature vector zi(t) observed by robot i at time t. This
is, the predicted label is given by ŷi(t) = sign(x>zi(t)).
Notice that if the prediction is correct, both ŷi(t) and yi(t)
have the same sign and thus, the exponential in (21) takes
a small value. Which in turn results in fi(t,x) being small.
On the other hand, if the classification is incorrect, the sign
of the exponential is positive, which results in a large value
of fi(t,x). Hence, the expression in (21) is a surrogate of
the error function since it results in small values when the
prediction is correct and on large values on the other hand.
Notice that agents need to exchange their current actions
x(t) with their neighbors to solve the minimization of (21)
using the algorithm defined by (17) and (18). Since the
dimensionality of the actions is as large as the feature vector
we want to find a sparse classifier in order to reduce the
communication cost. A way of doing so is to include a `1
norm regularization in the cost, which is known to promote
sparsity. Let, α > 0 and define the following local cost

f̃i(t,x) = fi(t,x) + α ‖x‖1 . (22)

The previous objective introduces a tradeoff between classi-
fication performance and sparsity. Instead, one can define
a desired tolerance for classification error – by imposing
that fi(t,x) is smaller than a given tolerance δ > 0 for
all i = 1 . . . N– and by minimizing the objective ‖x‖1, so
to get the sparsest of the solutions. With this idea we define
the following centralized problem

min
x

‖x‖1
s.t. fi(t,x)− δ < 0 ∀i = 1 . . . N.

(23)

To solve this problem in a distributed manner, we define
– as done in Section II – local copies of the classifier xi

for each agent. The decentralized version of the previous
problem then yields

min
x1,x2,...xN

1

N

N∑
i=1

‖xi‖1

s.t. fi(t,xi)− δ ≤ 0 ∀i = 1 . . . N

‖xi − xj‖2 − γ ≤ 0 ∀i = 1 . . . N.

(24)

We evaluate the performance of the saddle-point algorithm
(17)–(18) by solving the problem (24) applied to the team of
robots navigating around the intersection depicted in Figure
1. The positions of the N agents is initialized by drawing it
from a uniform distribution on the square [−L,L]2 and their
paths are random walks updated every Ts seconds, where
each step is drawn from a two-dimensional Gaussian vari-
able, with zero mean and covariance matrix diag(σw, σw).
Ever Ts seconds each agent has observed I images in the
IRA1 database [2] of either grass or pavement. Do notice that
even though the algorithm proposed is derived in continuous
time, for this application we propose to work with a discrete
time system. In Section V-B we present the results achieved
by the saddle-point algorithm in the previously described
problem. Before doing so, we describe in the next section
the feature extraction from the images.

A. Data from image database

The feature extraction is done as in [2], a procedure
inspired in the two-dimensional texton [32]. We describe
it next for completeness. The texture features zi(t) are
generated as the sum of a sparse dictionary representation
of subpatches of size 24-by-24. This is, each robot classifies
images patches of size 24-by-24 by first extracting the nine
non-overlapping 8-by-8 sub-patches within it. Each sub-
patch is then vectorized, the sample mean subtracted off
and divided by its norm. Such that the resulting sub-patch
j observed by agent i, yields a zero-mean vector zji with
norm one. The 9 vectors resulting from each sub-patch are
stacked as columns in a matrix Zi = [z1i ; . . . ; z

9
i ]. On the

other hand, the agents have a dictionary of textures that
has been trained offline following [2]. An example of this
dictionary can be observed in Figure 2. The dictionary can be
represented by a matrix D ∈Mn×64, where n is the number
of features that one wants to extract. The feature used for
classification by agent i is the aggregate sparse coding zi(t),
defined as zi(t) =

∑9
j=1 z

∗(D; zji (t)), where z∗(D; zji (t))
is the solution to the following optimization problem.

z∗(D; zji (t)) = argmin
z

1

2
‖zji (t)−Dz‖22 + ζ‖z‖1, (25)

where ζ > 0 the coefficient of the regularization.

B. Results

In this section we present the bahavior of the Online
Distributed Online Algorithm (17)–(18) for a team of robots
that drive in the intersection as the one depicted in Figure

1Integrated Research Assessment for the U.S. Armys Robotics Collabo-
rative Technology Alliance



Fig. 2: Example of dictionary for 8-by-8 gray scale patches.

1. For this particular example we consider N = 20 agents,
L = 15, σw and Ts = 1 . The parameters of the feature
extraction are set to ζ = 0.125, n = 128. We chose δ =
0.001, γ = 10 and the algorithm step size to be η = 0.02,
and we consider that each agent has acces to 24 images
per sampling period, in this case, 24 images per second. In
Figure 3 we observe that the network disagreement converges
to zero in approximately 6 seconds, which implies consensus
among the agents. This observation supports the theoretical
result in Proposition 1. In Figure 4 we depict the network
fit of one random agent. As predicted by Theorem 1 the
fit is sublinear. The effectiveness of the algorithm can be
observed in the classification accuracy achieved by the agents
in Figure 5. Notice that the classification error of all the
agents is bellow 30%. It can be observed as well, that some
agents classify with accuracy above 90%. The latter is the
case for agents that are observing grass. There seems to be
an intrinsic difficulty in classifying pavement in the current
data set. To support this claim we compute the covariance
matrix of 512 features of images selected randomly. We then
project the 192-dimensional feature vector onto the first two
principal components. This projection is depicted in Figure 6.
As it can be observed the points corresponding to pavement
cannot be separated from points corresponding to grass, yet
there is a cluster of grass points that is away from the points
containing pavement. This suggests that it is indeed harder
to classify pavement images.

VI. CONCLUSION

We considered the problem of constrained distributed
online learning. Each agent only has access to its local
constraints and objective function, and the aim is to coor-
dinate the actions among the agents such that the result-
ing trajectories are feasible and optimal for the team as
a whole. We showed that a distributed online version of
the saddle point algorithm achieves global fit, regret and
network disagreement bounded by functions whose growth
rate is bounded by

√
T . The latter result suggests vanishing

constraint violation, optimality and network agreement in
average as time evolves. We evaluate the performance of
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Fig. 3: Network disagreement per node for a network of 20 agents
that follow the dynamics (17)–(18). The feature vectors zi(t) ∈ Rn

are extracted from images of the IRA texture database as described
in section V-A. The disagreement is sublinear as expected by virtue
of Proposition 1.
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Fig. 4: Network fit F ij
T /T of one randomly selected agent in a

network of N = 20 agents that follow the dynamics (17)–(18).
The feature vectors zi(t) ∈ Rn are extracted from images of the
IRA texture database as described in Section V-A. As predicted by
Theorem 1 the average local fit is sublinear with the time horizon.

the algorithm for a team of robots driving through an urban
environment to perform real time texture classification for
the purpose of terrain recognition.
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