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1 Abstract

Dynamic networks have recently emerged as an efficient way to model various forms of interaction
within teams of mobile agents, such as sensing and communication. This article focuses on the use
of graphs as models of wireless communications. In this context, graphs have been used widely in
the study of robotic and sensor networks and have provided an invaluable modeling framework to
address a number of coordinated tasks ranging from exploration, surveillance and reconnaissance,
to cooperative construction and manipulation. In fact, the success of these stories has almost
always relied on efficient information exchange and coordination between the members of the team,
as seen, e.g., in the case of distributed state agreement where multi-hop communication has been
proven necessary for convergence and performance guarantees.

2 Keywords and Phrases
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3 Introduction

Communication in networked dynamical systems has typically relied on constructs from graph
theory, with disc-based and weighted-proximity graphs gaining the most popularity; see Figs. 1(a)
and 1(b). Besides their simplicity, these models owe their popularity to their resemblance to radio
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Figure 1: Fig. 1(a): Disc-based model of communication; Fig. 1(b): Weighted, proximity-based
model of communication; Fig. 1(c): Connected network of mobile robots.
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signal strength models, where the signals attenuate with the distance [1–3]. In this context, multi-
hop communication becomes equivalent to network connectivity, defined as the property of a graph
to transmit information between any pair of its nodes; see Fig. 1(c).

Specifically, let G(t) = {V, E(t),W(t)} denote a graph on n nodes that can be robots or mobile
sensors, so that V = {1, . . . , n} is the set of vertices, E(t) ⊆ V ×V is the set of edges at time t, and
W(t) = {wij(t) | (i, j) ∈ V × V} is a set of weights so that wij(t) = 0 if (i, j) 6∈ E(t) and wij(t) > 0
otherwise. If wij(t) = wji(t) for all pairs of nodes i, j, then the graph is called undirected; otherwise
it is called directed. The weights in W(t) typically model signal strength or channel reliability,
as per the disc-based and weighted-proximity models in Figs. 1(a) and 1(b). In these models
communication between nodes is related to their pairwise distance, giving rise to the dynamic or
time-varying nature of the graph G(t) due to node mobility. Given an undirected dynamic graph
G(t), we say that this graph is connected at time t if there exists a path, i.e., a sequence of distinct
vertices such that consecutive vertices are adjacent, between any two vertices in G(t). In the case
of directed graphs, two notions of connectivity are defined. A directed graph G(t) is called strongly
connected if there exists a directed path between any two of its vertices; equivalently, if every vertex
is reachable from any other vertex. On the other hand, a directed graph is called weakly connected
if replacing all directed edges by undirected edges produces a connected undirected graph. Finally,
a collection of graphs {G(t) | t = t0, . . . , tk} is called jointly connected over time if the union graph
∪tkt=t0

G(t) = {V,∪tkt=t0
E(t)} is connected. Obviously, checking for the existence of paths between all

pairs of nodes in a graph is difficult, especially so as the number of nodes in the graph increases.
For this reason, equivalent, algebraic representations of graphs are employed that allow for efficient
algebraic ways to check for connectivity, as we discuss in the following section.

While connectivity is necessary for information propagation in a network, it is also relevant to
the performance of many networked dynamical processes, such as synchronization and gossiping,
via its relation to the network eigenvalue spectra [4]. For example, the spectrum of the Laplacian
matrix of a network plays a key role in the analysis of synchronization in networks of nonlinear
oscillators [5, 6], distributed algorithms [7], and decentralized control problems [8, 9]. Similarly, the
spectrum of the adjacency matrix determines the speed of viral information spreading in a network
[10]. Additionally, more robust versions of connectivity, such as k-node or k-edge connectivity can
be used to introduce robustness of a network to node or link failures, respectively [11, 12].

4 Graph-Theoretic Connectivity Control

4.1 Connectivity Using the Graph Laplacian Matrix

A metric that is typically employed to capture connectivity of dynamic networks is the second
smallest eigenvalue λ2(L) of the Laplacian matrix L ∈ Rn×n of the graph, also known as the
algebraic connectivity or Fiedler value of the graph. For a weighted graph G = {V, E ,W} the
entries of the Laplacian matrix are typically related to the weights in W so that the i, j entry of
L is given by [L]ij =

∑n
j=1wij if i = j and [L]ij = −wij if i 6= j. The Laplacian matrix of an

undirected graph is always a symmetric, positive semidefinite matrix whose smallest eigenvalue
λ1(L) is identically zero with corresponding eigenvector the vector of all entries equal to one.
Additionally, the algebraic connectivity λ2(L) is a concave function of the Laplacian matrix that is
positive if and only if the graph is connected [13–16].

As the algebraic connectivity λ2(L) plays a critical role in determining whether a graph is
connected or not, a number of methods have been proposed for its decentralized estimation and
control. These range from methods that employ market-based control to underestimate the alge-
braic connectivity and accordingly control the network structure [12], to methods that enforce the
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states of the nodes to oscillate at frequencies that correspond to the Laplacian eigenvalues and then
use Fast Fourier Transform to estimate these eigenvalues [17], to methods that iteratively update
the interval where the algebraic connectivity is supposed to lie [18], and methods that rely on the
Power Iteration method and its variants [19–24]. All the above techniques are often integrated
with appropriate controllers to regulate mobility of the nodes while ensuring connectivity of the
network. Another way that λ2(L) can be used to ensure connectivity of dynamic graphs is via
optimization-based methods that maximize it away from its zero value. Such approaches were ini-
tially centralized as connectivity is a global property of a graph [25], although recently distributed
subgradient algorithms [19] as well as non-iterative decomposition techniques [26] have also been
proposed. As the algebraic connectivity is a non-differentiable function of the Laplacian matrix,
designing continuous-time feedback controllers to maintain it positive definite is a challenging task.
This problem was overcome in [27] via the use of gradient flows that maintain positive definite-
ness of the determinant of the projected Laplacian matrix to the space that is perpendicular to
eigenvector of ones.

4.2 Connectivity Using the Graph Adjacency Matrix

Alternatively, connectivity can be captured by the sum of powers
∑K

k=0A
k of the adjacency matrix

A ∈ Rn×n of the network for K ≤ n− 1. The entries of the adjacency matrix are typically related
to the weights in W as [A]ij = wij . For disc-based graphs as in Fig. 1(a), the i, j entry of the kth
power of the adjacency matrix [Ak]ij captures the number of paths of length k between nodes i
and j; for weighted graphs, [Ak]ij captures a weighted sum of those paths. Therefore, the entries

of
∑K

k=0A
k represent the number of paths up to length K between every pair of nodes in the

graph [16]. By definition of graph connectivity, if all entries of
∑K

k=0A
k are positive for K = n−1,

then the network is connected. Clearly, for K < n − 1, not all entries of
∑K

k=0A
k are necessarily

positive, even if the graph is connected. Maintaining positive definiteness of the positive entries of∑K
k=0A

k of an initially connected graph maintains paths of length K between the corresponding
nodes and, as shown in [11], is sufficient to maintain connectivity of the graph throughout.

The ability to capture graph connectivity using the adjacency matrix has given rise to optimization-
based connectivity controllers [11, 28], that are often centralized due to the multi-hop dependencies
between nodes due to the powers of the adjacency matrix. Since smaller powers correspond to
shorter dependencies (paths), decentralization is possible as K decreases. If K = 1, connectivity
maintenance reduces to preserving the pairwise links between the nodes in an initially connected
network. Since the adjacency matrix of weighted graphs is often a differentiable function, this
approach can result in continuous-time feedback solution techniques. Discrete-time approaches are
discussed in [29–31], while [32–37] rely on local gradients that may also incorporate switching in
the case of link additions. Switching between arbitrary spanning topologies has also been studied
with the spanning subgraphs being updated by local auctions [12], distributed spanning tree algo-
rithms [38], combination of information dissemination algorithms and graph picking games [39], or
intermediate rendezvous [40, 41]. This class of approaches are typically hybrid, combining continu-
ous link maintenance and discrete topology control. The algebraic connectivity λ2(L) and number
of paths

∑K
k=0A

k metrics can also be combined to give controllers that maintain connectivity, while
enforcing desired multi-hop neighborhoods for all agents [42].

A recent, comprehensive survey on graph-theoretic approaches for connectivity control of dy-
namic graphs can be found in [43].
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5 Applications in Mobile Robot Network Control

Methods to control connectivity of dynamic graphs have been successfully applied to multiple
scenarios that require network connectivity to achieve a global coordinated objective. Indicative of
the impact of this work is recent literature on connectivity preserving rendezvous [29, 33, 37, 44, 45],
flocking [36, 46] and formation control [37, 40], where so far connectivity had been an assumption.
Further extensions and contributions involve connectivity control for double integrator agents [30],
agents with bounded inputs [47–49] and indoor navigation [42], as well as for communication based
on radio signal strength [50–53] and visibility constraints [29, 44, 54–56]. Periodic connectivity for
robot teams that need to occasionally split in order to achieve individual objectives [57, 58] and
sufficient conditions for connectivity in leader-follower networks [59], also add to the list. Early
experimental results have demonstrated efficiency of these algorithms also in practice [57, 60, 61].

6 Summary and Future Directions

Although graphs provide a simple abstraction of inter-robot communications, it has long been
recognized that since links in a wireless network do not entail tangible connections, associating links
with arcs on a graph can be somewhat arbitrary. Indeed, topological definitions of connectivity
start by setting target signal strengths to draw the corresponding graph. Even small differences in
target strengths might result in dramatic differences in network topology [62]. As a result, graph
connectivity is necessary but not nearly sufficient to guarantee communication integrity, interpreted
as the ability of a network to support desired communication rates.

To address these challenges, a new body of work is recently appearing that departs from tra-
ditional graph-based models of communication. Specifically, [63] employs a simple, yet effective,
modification that relies on weighted graph models with weights that capture the packet error prob-
ability of each link [64]. When using reliabilities as link metrics it is possible to model routing
and scheduling problems as optimization problems that accept link reliabilities as inputs [65, 66].
The key idea proposed in [63] is to define connectivity in terms of communication rates and to
use optimization formulations to describe optimal operating points of wireless networks. Then,
the communication variables are updated in discrete time via a distributed gradient descent al-
gorithm on the dual function, while robot motion is regulated in continuous time by means of
appropriate distributed barrier potentials that maintain desired communication rates. Related ap-
proaches consider optimal communications based on T-slot time averages of the primal variables
for general mobility schemes was recently addressed in [67], as well as optimization of mobility and
communications based on the end-to-end bit error rate between nodes [68, 69].

7 Cross-References

• link to “Graphs for modeling networked control systems,” Mesbahi Mesbahi and Magnus
Egerstedt

• link to “Flocking in Networked Systems,” Ali Jadbababie
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