
1

Probabilistic Motion Planning under Temporal Tasks
and Soft Constraints

Meng Guo, Member, IEEE, and Michael M. Zavlanos, Member, IEEE

Abstract—This paper studies motion planning of a mobile
robot under uncertainty. The control objective is to synthesize
a finite-memory control policy, such that a high-level task
specified as a Linear Temporal Logic (LTL) formula is satisfied
with a desired high probability. Uncertainty is considered in
the workspace properties, robot actions, and task outcomes,
giving rise to a Markov Decision Process (MDP) that models
the proposed system. Different from most existing methods, we
consider cost optimization both in the prefix and suffix of the
system trajectory. We also analyze the potential trade-off between
reducing the mean total cost and maximizing the probability
that the task is satisfied. The proposed solution is based on
formulating two coupled Linear Programs, for the prefix and
suffix, respectively, and combining them into a multi-objective
optimization problem, which provides provable guarantees on the
probabilistic satisfiability and the total cost optimality. We show
that our method outperforms relevant approaches that employ
Round-Robin policies in the trajectory suffix. Furthermore, we
propose a new control synthesis algorithm to minimize the
frequency of reaching a bad state when the probability of
satisfying the tasks is zero, in which case most existing methods
return no solution. We validate the above schemes via both
numerical simulations and experimental studies.

Index Terms—Markov Decision Process, Linear Temporal
Logic, Chance Constrained Optimization, Motion Planning.

I. INTRODUCTION

IN this paper we study the problem of robot motion planning
under uncertainty and temporal task specifications. We

consider uncertainty in the workspace properties, robot motion
and actions, and outcome of task executions, which gives rise
to a Markov Decision Process (MDP) to model the proposed
system. MDPs have been used extensively to model motion
and sensing uncertainty in robotics [1], [2] and then solve deci-
sion making problems that optimize a given control objective.
The most common objective is to reach a goal state from an
initial state while minimizing the cost. The resulting solution
is a policy that maps states to actions [2]. On the other hand,
Linear Temporal Logic (LTL) provides a formal language to
describe complex high-level tasks beyond the classic start-to-
goal navigation. A LTL task formula is usually specified with
respect to an abstraction of the robot motion within the allowed
workspace [3], modeled by a deterministic finite transition
system (FTS). Then a high-level discrete plan is found using
off-the-shelf model-checking algorithms [4], which is then
executed through low-level continuous controllers [3], [5].
This framework is extended to allow for both robot motion

The authors are with the Department of Mechanical Engineering and
Materials Science, Duke University, Durham, NC 27708 USA. Emails:
meng.guo, michael.zavlanos@duke.edu. This work is sup-
ported in part by NSF under grant IIS #1302283.

and actions in the task specification [6] and partially-known
or dynamic workspaces in [7], [8].

Recently, there have been many efforts to address the
problem of synthesizing a control policy for a MDP that
satisfies high-level temporal tasks specified in various formal
languages. Different classes of Probabilistic Computation Tree
Logic (PCTL) formulas have been studied in [9] for abstraction
and verification over Interval-valued Markov Chains. The work
in [10] proposes a control policy for a mobile robot that max-
imizes the probability of satisfying a bounded linear temporal
logic (BLTL) formula. Syntactical co-safe LTL formulas (sc-
LTL) are considered in [11] for a deterministic robot that co-
exists with other robots whose behavior is modeled as a MDP.
A FTS with time-varying rewards is controlled to satisfy a
LTL formula and maximize the accumulated reward in [12].
A robust control policy for MDPs with uncertain transition
probabilities is proposed in [8]. A verification toolbox is
provided in [13] for probabilistic discrete-time or continuous-
time Markov Chain (MC), under a wide variety of quantitative
properties expressed in PCTL, LTL, CTL, and so on.

In this work, we study motion planning of a mobile robot
under uncertainty in both robot motion and workspace proper-
ties. The goal is to synthesize a finite-memory control policy
that generates robot trajectories that satisfy a high-level LTL
task formula with desired high probability. At the same time,
we optimize the total cost both in the prefix and suffix parts
of the system trajectories. Our proposed approach is based
on solving two coupled Linear Programs, one for the prefix
and one for the suffix, over the occupancy measures of the
product automaton introduced in [14]. Moreover, we explore
cases where the probability of satisfying the LTL tasks is zero,
so that an Accepting End Component (AEC) does not exist
in the MDP, where most relevant work returns no solutions.
To address such situations, we treat satisfaction of the tasks
as soft constraints and propose a relaxed suffix plan that
minimizes the frequency with which the system enters bad
states that violate the task specifications. We show that our
approach outperforms the widely-used Round-Robin policy,
via both numerical simulations and experimental studies. We
also compare our proposed method with the widely-used
probabilistic model-checking tool PRISM [13].

Our work is related to literature on (i) policy synthesis for
MDPs under multiple objectives; (ii) cost optimization within
AECs in MDPs; and (iii) infeasible temporal tasks. We discuss
below this literature and highlight our contributions.

Since we consider both temporal tasks and total-cost criteria
over MDPs, this work is closely related to policy synthesis of
MDPs under multiple objectives. The work in [14] proposes

2

a framework with provable correctness to synthesize a control
policy for MDPs under multiple constrained total-cost criteria.
A survey on multi-objective decision-making for MDPs can
be found in [15]. On the other hand, verification of MDPs
under multiple high-level tasks is addressed in [16], where
the probability of satisfying each subtask is lower-bounded
by a given value. Moreover, a quantitative multi-objective
verification scheme is proposed in [17], [18] for numerical
queries over probabilistic reward predicates. On the other
hand, the seminal works [19], [20] consider MDPs with
multi-dimensional weights under multi-percentile queries that
may be conflicting. However, most of the above work does
not address cost optimization over the suffix of the system
trajectory within the AECs, neither does it address the case
where no AECs can be found in the product automaton, which
are the main contributions here.

The satisfaction of a LTL formula is associated with reach-
ing the corresponding AECs. In particular, in [4, Chapter 10],
a value iteration method is used to solve the maximal reacha-
bility problem towards the AECs to obtain a policy for the plan
prefix. For planning within the AECs, [4], [17], [21] adopt the
Round-Robin policy, which guarantees only correctness but
not optimality. Optimal policies for the plan suffix that keeps
the system within the AECs have been proposed in [22]–[25].
Specifically, in [22] the expected cost of satisfying instances
of a desired property is minimized, while in [23] the minimal
bottleneck cost is considered. Both approaches in [22], [23]
require particular types of LTL formulas (such as “always
eventually”). The work in [24], [26] considers MDPs with
ω-regular specifications and quantitative resource constraints
within the AECs. The work in [25] investigates the Pareto cost
of a human-in-the-loop MDP measured by a given discounted
cost function. Compared to this literature, the multi-objective
optimization problem that we formulate to solve the control
synthesis problem allows us to explicitly characterize the
trade-off between prefix and suffix optimality. We then extend
this methodology to the case where no AECs can be found.

Most aforementioned work [4], [17], [19]–[22], [27] relies
on the assumption that the product automaton contains at least
one AEC. However, in many situations this assumption does
not hold so that the probability of satisfying the task under any
policy is zero. In this case, it is still important to identify those
policies that minimize the frequency with which the system
will reach the bad states that violate the task specifications.
Consequently, it is desirable to synthesize a policy with certain
risk guarantees even when soft LTL tasks are considered that
are only partially-feasible. To the best of our knowledge, there
is no work on control synthesis for infeasible soft LTL task
formulas defined on MDPs, especially when an AEC can not
be found in the resulting product automaton. For deterministic
transition systems, a framework for robot motion planning in
partially-known workspaces is proposed in [7] that can handle
soft LTL task formulas whose satisfiability is improved over
time; a least-violating control strategy is synthesized in [28]
for a set of LTL safety rules. In the case of MDPs, a relevant
formulation is considered in [29] where a MDP is controlled
to satisfy an ω-regular formula. A policy is proposed to ensure
that the MDP enters a failure state relatively late in the prefix.

However, a multi-objective criterion of the control policy,
especially in the plan suffix, is not considered there. Also,
recent work in [30] proposes an approach to increase the
satisfaction probability by modifying the task formula which,
however, only considers co-safe LTL formulas without cost
optimization constraints.

In summary, the main contribution of this work is three-
fold: (i) a framework that optimizes the total cost both in
the plan prefix and suffix, while ensuring that the tasks are
satisfied with a desired high probability; (ii) a new algorithm
to synthesize the control policies that have a high probability
of satisfying the task over long time intervals, for cases where
an AEC does not exist; and (iii) a new method that allows
the system to recover from bad states and continue the task.

The rest of the paper is organized as follows. Section II
introduces necessary preliminaries. In Section III, we formal-
izes the considered problem. Section IV presents our solution
in details, which includes four major parts. Section V demon-
strates the feasibility of the results by numerical simulations.
Section VI contains the experimental results. We conclude and
discuss about future directions in Section VII.

II. PRELIMINARIES

A. Transient MDP

A Markov Decision Process (MDP) is defined as a 6-tuple
M , (X, U, D, pD, cD, x0), where X is the finite state
space; U is the finite control action space (with a slight
abuse of notation, U(x) also denotes the set of control actions
allowed at state x ∈ X); D = {(x, u) |x ∈ X, u ∈ U(x)} is
the set of possible state-action pairs; pD : X×U×X → [0, 1]
is the transition probability function so that pD(x, u, x̌) is
the transition probability from state x to state x̌ via control
action u and

∑
x̌∈X pD(x, u, x̌) = 1, ∀(x, u) ∈ D; cD : D →

R>0 that cD(x, u) is the cost of performing action u ∈ U(x)
at state x ∈ X; and x0 ∈ X is the initial state. Denote
by Post(x, u) , {x̌ ∈ X | pD(x, u, x̌) > 0}, ∀(x, u) ∈ D.

The above MDP evolves by taking an action u ∈ U(x)
associated with every state x ∈ X . Denote by RT =
x0u0x1u1 · · ·xTuT the past run that is a sequence of previous
states and actions up to time T ≥ 0. As defined in [2], a control
policy µ = µ0µ1 · · · is a sequence of decision rules µt at time
t ≥ 0. A control policy is stationary if µt = µ, ∀t ≥ 0, where µ
can be randomized so that µ : X×U → [0, 1] or deterministic
so that µ : X → U , ∀t ≥ 0. On the other hand, a policy is
history dependent or finite-memory if µt : Rt × U → [0, 1],
where Rt is the past history until time t ≥ 0.

B. End Components

A sub-MDP of M is a pair (S, A) where S ⊆ X
and A : S → 2U such that (i) S 6= ∅, ∅ 6= A(s) ⊆ U(s),
∀s ∈ S; (ii) Post(s, u) ⊆ S, ∀s ∈ S and ∀u ∈ A(s). An End
Component (EC) of M is a sub-MDP (S, A) such that the
digraph G(S,A) induced by (S,A) is strongly connected. An
end component (S, A) is called maximal if there is no other
end component (S′, A′) such that (S, A) 6= (S′, A′), S ⊆ S′
and A(s) ⊆ A′(s), ∀s ∈ S. The set of Maximal End
Components (MECs) of a MDP is finite and can be uniquely

3

determined. The analysis of MECs would include each EC as a
special case. We refer the readers to Definitions 10.116, 10.117
and 10.124 of [4] for details. Moreover, an Accepting MEC
(AMEC) is an end component that satisfies certain accepting
conditions such as the Streett and Robin conditions, which
will be defined in the sequel. On the other hand, a Strongly
Connected Component (SCC) of the digraph GM induced
by M is a set of states S ⊆ X so that there exists a path
in each direction between any pair of states in S. Similarly,
an Accepting SCC (ASCC) is a SCC that satisfies certain
accepting conditions. Note that the main difference between a
MEC (S,A) and a SCC S is that the SCC does not restrict
the set of actions U(s) that can be taken at each state s ∈ S.
In other words, there might be paths that start from any state
within the SCC and end at states outside the SCC.

C. LTL and DRA

The ingredients of a Linear Temporal Logic (LTL) formula
are a set of atomic propositions AP and several Boolean and
temporal operators. Atomic propositions are Boolean variables
that can be either true or false. A LTL formula is specified
according to the syntax [4]: ϕ , > | p | ϕ1 ∧ ϕ2 | ¬ϕ | ©
ϕ | ϕ1 Uϕ2, where > , True, p ∈ AP , © (next), U (until)
and ⊥ , ¬>. For brevity, we omit the derivations of other
operators like � (always), 3 (eventually), ⇒ (implication).
The semantics of LTL is defined over the set of infinite words
over 2AP . Intuitively, p ∈ AP is satisfied on a word w =
w(1)w(2) . . . if it holds at w(1), i.e., if p ∈ w(1). Formula
©ϕ holds true if ϕ is satisfied on the word suffix that begins
in the next position w(2), whereas ϕ1 Uϕ2 states that ϕ1 has
to be true until ϕ2 becomes true. Finally, 3ϕ and �ϕ are
true if ϕ holds on w eventually and always, respectively. We
refer the readers to Chapter 5 of [4] for the full definition.

The set of words that satisfy a LTL formula ϕ over AP
can be captured through a Deterministic Rabin Automa-
ton (DRA) Aϕ [4], defined as Aϕ = (Q, 2AP , δ, q0, AccA),
where Q is a set of states; 2AP is the alphabet; δ ⊆ Q ×
2AP × Q is a transition relation; q0 ∈ Q is the initial state;
and AccA ⊆ 2Q×2Q is a set of accepting pairs, i.e., AccA =
{(H1

A, I
1
A), (H2

A, I
2
A), · · · , (HN

A , I
N
A)} where Hi

A, I
i
A ⊆ Q,

∀i = 1, 2, · · · , N . An infinite run q0q1q2 · · · of A is accepting
if there exists at least one pair (Hi

A, I
i
A) ∈ AccA such

that ∃n ≥ 0, it holds ∀m ≥ n, qm /∈ Hi
A and

∞
∃n ≥

0, qn ∈ IiA, where
∞
∃ stands for “existing infinitely many”.

Namely, this run should intersect with Hi
A finitely many times

while with IiA infinitely many times. There are translation
tools [31] to obtain Aϕ given ϕ, which requires the process
of translating firstly the LTL formula to the associated Non-
deterministic Büchi Automaton (NBA), and then to the DRA
with complexity 22O(n log n)

, where n is the length of ϕ. Our
implementation of the Python interface for [31] can be found
in [32]. Note that [31] allows for different levels of automata
simplifications to be made regarding the size of Aϕ, and a
simplified automation may result in loss of optimality.

0 2 4 6

x(m)

0

2

4

y
(m

)

FR

0.1 0.8 0.1

0 2 4 6

x(m)

0

2

4

y
(m

)

BK

0.15 0.7 0.15
0 2 4 6

x(m)

0

2

4

y
(m

)

TR
0.05

0.9
0.05

0 2 4 6

x(m)

0

2

4

y
(m

)

TL
0.05

0.9
0.05

Figure 1: Uncertainty of each action primitive, see Section V for
details. Possible post states are in grey from the starting state in
black, where the associated possibilities are marked in red.

III. PROBLEM FORMULATION

A. Mathematical Model

In order to model uncertainty in both the robot motion
and the workspace properties, we extend the definition of a
MDP from Section II-A to include probabilistic labels, as
the probabilistically-labeled MDP:

M = (X, U, D, pD, (x0, l0), AP, L, pL, cD), (1)

where AP is a set of atomic propositions that capture the
properties of interest in the workspace; L : X → 22AP

contains the set of property subsets that can be true at each
state; and pL : X × 2AP → [0, 1] specifies the associated
probability. Particularly, pL(x, l) denotes the probability that
state x ∈ X satisfies the set of propositions l ⊂ AP . Note
that

∑
l∈L(x) pL(x, l) = 1, ∀x ∈ X . Moreover, (x0, l0) con-

tains the initial state x0 ∈ X and the initial label l0 ∈ L(x0),
while the rest of the notations in (1) are the same as defined
in Section II-A. The probabilistic labeling function provides a
way to consider time-varying and dynamic workspace proper-
ties. Moreover, there is a LTL task formula ϕ specified over the
same set of atomic propositions AP , as the desired behavior
of M. We assume that the MDP M in (1) is fully-observable
due to the following assumption.

Assumption 1. At any stage t ≥ 0, the current robot state
xt ∈ X and its label lt ∈ L(xt) are fully-observable. �

While the robot is moving within the workspace, it is
capable of sensing an actual property and determine the
label of the state it is located at. At stage T ≥ 0, the
robot’s past path is given by XT = x0x1 · · ·xT ∈ X(T+1),
the past sequence of observed labels is given by LT =
l0l1 · · · lT ∈ (2AP)(T+1) and the past sequence of con-
trol actions is UT = u0u1 · · ·uT ∈ U (T+1). It holds
that pD(xt, ut, xt+1) > 0 and pL(xt, lt) > 0, ∀t ≥ 0.
These three sequences can be composed into the complete
past run RT = x0l0u0x1l1u1 · · ·xT lTuT . Denote by XT , LT
and RT the set of all possible past sequences of states, labels,
and runs up to stage T . We set T =∞ for infinite sequences.

Definition 1. The mean total cost [2], [33] of an infinite robot
run R∞ of M is defined as

Cost(R∞) = lim inf
n→∞

1

n

n∑
t=0

cD(xt, ut), (2)

where R∞ = x0l0u0x1l1u1 · · · ∈ R∞. �

As discussed in [2], [20], [24], [33], the above mean total
cost is called the mean-payoff function (or limit-average),

4

where the “lim” operator is needed as the limit-average might
not exist for some runs, see [24], [33], [34].

Our goal is to find a finite-memory policy for M, denoted
by µ = µ0µ1 · · · . The control policy at stage t ≥ 0 is given
by µt : Rt × U → [0, 1], where Rt is the past run Rt,
∀t ≥ 0. Denote by µ the set of all such policies. Given a
control policy µ ∈ µ, the probability measure PrMµ (·) on the
smallest σ-algebra, over all possible infinite sequences R∞
that contain RT , is the unique measure [4] by

PrµM(R∞) =

T∏
t=0

pD(xt, ut, xt+1)

· pL(xt, lt) · µt(Rt, ut),

(3)

where µ(Rt, ut) is defined as the probability of choosing
action ut given the past runRt. Then we define the probability
of M satisfying ϕ under policy µ by:

PrµM(ϕ) = PrµM{R∞ |L∞ |= ϕ},

where the satisfaction relation “|=” is introduced in Sec-
tion II-C, given an infinite word and a LTL formula. Ac-
cordingly, the risk is defined as the probability that the
task formula ϕ is not satisfied by M under the policy µ,
namely, RiskµM(ϕ) = 1− PrµM(ϕ).

Problem 1. Given the labeled MDPM defined in (1) and the
task specification ϕ, our goal is to sovle:

min
µ∈µ

EµM{Cost(R∞)}

s.t. RiskµM(ϕ) ≤ γ,
(4)

where γ ≥ 0 is a pre-defined parameter as the allowed risk;
the optimal policy minimizes the mean total cost and ensures
that the risk of violating ϕ remains bounded by γ. �

Note that the traditional definition of un-discounted ex-
pected total cost over an infinite run from [2], [14] is not
used here, as it is infinite except for the special case of
transient MDPs defined in Section II-A. However, in this
work, the modelM is not restricted to be transient. Moreover,
the discounted total cost in [2] is not used here either due
to two reasons: first, it is not obvious how to choose the
discount factor for various control tasks ϕ [25]; and second,
we are more interested in optimizing the repetitive long-term
behavior of the system, rather than the short-term one [20]. In-
depth discussions on the optimization of infinite-horizon un-
discounted or discounted total-cost criteria over MDPs with or
without constraints can be found in [2].

Remark 1. Different from the maximal reachability problem
addressed in [4], [21], a deterministic policy would not suffice
here. Instead, randomization is required due to the mean total-
cost criterion and the risk constraint, similar to [14]. �

IV. SOLUTION

This section contains the three major parts of the proposed
solution: (i) the construction of the product automaton and
its AMECs; (ii) the algorithms to synthesize the optimal plan
prefix and suffix, for both cases where the AMECs exist or not;
(iii) the complete policy, and the online execution algorithm.

A. Product Automaton and AMECs

To begin with, we construct the DRA Aϕ associated with
the LTL task formula ϕ via the translation tools [31], [32].
Let it be Aϕ = (Q, 2AP , δ, q0, AccA), where the notations
are defined in Section II-C. Then we construct a product
automaton between the robot model M and the DRA Aϕ.

Definition 2. Denote by P the productM×Aϕ as a 7-tuple:

P = (S, U, E, pE , cE , s0, AccP), (5)

where: the state S ⊆ X × 2AP × Q is so that 〈x, l, q〉 ∈ S,
∀x ∈ X , ∀l ∈ L(x) and ∀q ∈ Q; the action set U is the
same as in (1) and U(s) = U(x), ∀s = 〈x, l, q〉 ∈ S; E =
{(s, u) | s ∈ S, u ∈ U(s)}; the transition probability pE :
S × U × S → [0, 1] is so that

pE
(
〈x, l, q〉, u, 〈x̌, ľ, q̌〉

)
= pD(x, u, x̌) · pL(x̌, ľ) (6)

where (i) 〈x, l, q〉, 〈x̌, ľ, q̌〉 ∈ S; (ii) (x, u) ∈ D; and
(iii) q̌ ∈ δ(q, l); the cost function cE : E → R>0 is so
that cE

(
〈x, l, q〉, u

)
= cD(x, u), ∀

(
〈x, l, q〉, u

)
∈ E. Namely,

the label l should fulfill the transition condition from q to q̌
in Aϕ; the single initial state is s0 = 〈x0, l0, q0〉 ∈ S;
the accepting pairs are defined as AccP = {(Hi

P , I
i
P), i =

1, 2, · · · , N}, where Hi
P = {〈x, l, q〉 ∈ S | q ∈ Hi

A} and IiP =
{〈x, l, q〉 ∈ S | q ∈ IiA}, ∀i = 1, 2, · · · , N . �

The product P computes the intersection between all traces
of M and all words that are accepted by Aϕ, to find all
admissible robot behaviors that satisfy the task ϕ. It com-
bines the uncertainty in robot motion and the workspace
model by including both x and l in the states. The Rabin
accepting condition of P is defined as follows: An infinite
path RP = s0s1 · · · of P is accepting if for at least one
pair (Hi

P , I
i
P) ∈ AccP it holds that RP intersects with Hi

P
finitely often while with IiP infinitely often. To transform this
condition into equivalent graph properties, we need to compute
the AMECs of P associated with its accepting pairs AccP .
Detailed definition of MECs is given in Section II-B.

In order to find the complete set of AMECs of P , for each
pair (Hi

P , I
i
P) ∈ AccP , perform the following steps:

(i) Build the MDP Z¬Hi , (S′, U ′, E′, p′E), where S′ =
S¬Hi ∪ {ν} is the set of states with S¬Hi = S\Hi

P and ν a
trap state; U ′ = U ∪ {τ0} is the set of actions where τ0 is a
pseudo action; E′ ⊂ S′ ×U is the set of transitions with the
associated probability p′E which are defined by three cases:
(a) for the transitions within S¬Hi it holds that (s, u) ∈ E′

and p′E(s, u, š) = pE(s, u, š), ∀(s, u) ∈ E where s, š ∈
S¬Hi ; (b) for the transitions from S¬Hi to outside S¬Hi it holds
that (s, u) ∈ E′ and p′E(s, u, ν) =

∑
š/∈S¬Hi

pE(s, u, š),
∀(s, u) ∈ E where s ∈ S¬Hi ; and (c) the trap state is included
in a self-loop such that (ν, τ0) ∈ E′ and p′E(ν, τ0, ν) = 1.
Simply speaking, all transitions from inside S¬Hi to out-
side S¬Hi are transformed to transitions to the trap state ν.

(ii) Determine all MECs of Z¬Hi above via Algo-
rithm 47 in [4], which is based on splitting the strongly
connected components (SCCs) of Z¬Hi until the conditions
of being an end component are fulfilled. Our implemen-
tation for this algorithm can be found in [32]. Denote

5

by Ξi = {(S′1, U ′1), (S′2, U
′
2), · · · (S′Ci

, U ′Ci
)} the set of

MECs, where S′c ⊂ S′ and U ′c : S′c → 2U
′
, ∀c = 1, 2, · · · , Ci.

Note that S′c ∩ S′c′ = ∅, ∀(S′c, U ′c), (S′c′ , U ′c′) ∈ Ξi.
(iii) Find (S′c, U

′
c) ∈ Ξi that is accepting, i.e., it satisfies ν /∈

S′c and S′c ∩ IiP 6= ∅. Save the AMECs in Ξiacc. Since Ξiacc is
computed for each (Hi

P , I
i
P) ∈ AccP , we denote by Ξacc =

{Ξiacc, i = 1, · · · , N} the complete set of AMECs of P .

Remark 2. A single state with a self-transition can be a MEC
with a proper action set. Therefore, there exists at most |S′|
MECs within Z¬Hi , ∀i = 1, · · · , N . Thus Step (ii) above has
complexity O(|S′|2), as shown in Lemma 10.126 of [4], while
Steps (i) and (iii) have complexity linear with |S′|. �

B. Plan Prefix and Suffix Synthesis

Given the complete set of AMECs Ξacc of P , in this
section we show how to synthesize the control policy to drive
the system towards Ξacc and furthermore remain inside Ξacc
while satisfying the accepting condition. As mentioned in
Section I, most related work [4], [16], [17], [21] focuses
on maximizing the probability of reaching the union of
AMECs, i.e., ∪(S′c, U

′
c)∈Ξacc

S′c, where dynamic programming
techniques, such as value or policy iteration, can be applied
to obtain the optimal policy. Furthermore, once the system
enters any AMEC, e.g., (S′c, U

′
c) ∈ Ξacc, it has probability 1 of

staying within S′c by following U ′c (see Lemma 10.119 of [4]).
The Round-Robin policy is adopted in [4], [17], [21] that
ensures all states in S′c (including its nonempty intersection
with IiP) are visited infinitely often. As a result, the task ϕ is
satisfied by P under this policy with the maximal probability.

The above solutions may suffice for verification problems
that do not optimize cost or for tasks with trivial accepting
conditions. However, for the purposes of plan synthesis and for
general tasks, it is of practical interest to simultaneously satisfy
the probability of reaching all the AMECs as well as optimize
the mean cost of staying within any AMEC and fulfilling the
accepting condition. Moreover, when no AECs can be found,
instead of simply reporting failure, it is important to obtain a
relaxed policy that guarantees high probability of satisfying the
task over long time intervals thus minimizing the frequency of
encountering bad events. In what follows we present a policy
synthesis algorithm that consists of four parts:

• the plan prefix that drives the system from the initial state
to all AMECs, while minimizing the expected cost and
respecting the risk constraint; see Section IV-B1;

• the plan suffix that keeps the system within the AMEC it
has reached, while satisfying the accepting condition and
optimizing the expected suffix cost; see Section IV-B2;

• the relaxed prefix and suffix plans for the case where no
AECs of P can be found; see Section IV-B3; and

• the complete finite-memory policy for the original MDP
M; see Section IV-C1.

Before stating the solution, we introduce a partition of S
given the initial state s0 and the set of AMECs Ξacc. Let Sr ⊆
S be the set of states within S that can be reached from s0,
which can be derived via a simple graph search in P .

s0

s1

s2

s3

s4

s5

s6
s7

s8

s9

s10

Sr Sc So Sn Sd

Figure 2: Illustration of the partition of S in Definition 3, where Sr ,
Sc, So, Sn and Sd are highlighted by red, blue, orange, green and
black areas, respectively. Details can be found in Example 1.

Definition 3. Given s0 and Ξacc, S is partitioned as S = So∪
Sc∪Sd∪Sn, where So , S\Sr is the set of states that can not
be reached from s0; Sc is the union of all goal states in Ξacc,
i.e., Sc , ∪(S′c, U

′
c)∈Ξacc

S′c; Sd ⊆ Sr can be reached from s0

but can not reach any state in Sc; and Sn , Sr\(Sc ∪ Sd). �

The set Sd can be derived through a simple graph search,
e.g., by reversing the directed graph associated with P , finding
all reachable nodes of any state within each (S′c, U

′
c) ∈ Ξacc

(as any AMEC is strongly connected) and finally computing its
cross intersection with Sr; see [32] for implementation details.
Roughly speaking, Sn is the set of states related to the plan
prefix, Sc is the set of goal states related to the plan suffix,
and Sd is set of bad states to be avoided during the prefix.
Since So contains the states that can not be reached from s0,
it is neglected hereafter for the purpose of plan synthesis.

Example 1. This example illustrates the partition in Def-
inition 3. Consider the toy product automaton P in Fig-
ure 2. For state s0, the set of reachable states is Sr =
{s0, s1, s2, s3, s5, s6, s7, s8, s10}, the set of unreachable states
is So = {s4, s9}, the states within an AMEC are S′c1 =
{s5, s6, s10} and another AMEC S′c2 = {s7, s8}, thus Sc =
S′c1 ∪S

′
c2 = {s5, s6, s7, s8, s10}, the states that can be reached

from s0 but can not reach Sc are Sd = {s1, s3}, and the states
that s0 can reach outside Sc ∪ Sd are Sn = {s0, s2}. �

1) Plan Prefix: Similar to [17], [18], we first con-
struct a modified sub-MDP Zpre of P as Zpre ,
(Sp, Up, Ep, s0, pp, cp), where the set of states is given by
Sp = Sn ∪ Sc with Sn, Sc being defined in Definition 3. The
set of actions is given by Up = U∪{τ0} where τ0 is a self-loop
action. The set of transitions Ep is the subset of E associated
with Sp. Moreover, the transition probability pp is defined
by (i) pp(s, u, š) = pE(s, u, š), ∀s, š ∈ Sp where s /∈ Sc
and ∀u ∈ U(s); and (ii) pp(s, τ0, s) = 1, ∀s ∈ Sc. Finally, the
cost function cp is defined by (i) cp(s, u) = cE(s, u), ∀s ∈ Sn
and ∀u ∈ U(s); and (ii) cp(s, τ0) = 0, ∀s ∈ Sc.

Then, we find a policy for Zpre such that, starting from s0,
it can reach the set of goal states Sc with a probability larger
than 1 − γ, while at the same time minimizing the expected
total cost. Formally, consider the problem below:

Problem 2. Given the sub-MDP Zpre, compute an optimal

6

stationary prefix policy π?pre ∈ π that solves the problem

min
π∈π

[
Cpre(Sc) , EπZpre

{ ∞∑
t=0

cp(st, ut)
}]

s.t. Prπs0(3Sc) ≥ 1− γ,
(7)

where s0u0s1u1 · · · is a run of Zpre, π is the set of all
stationary policies, the objective function is the expected total
cost, Prπs0(3Sc) is the probability of reaching Sc from the
initial state s0, under the policy π; and γ > 0 is from (4). �

Note that the objective function in (7) is well-defined and
finite due to the fact that Zpre is transient with respect to Sn,
and is equal to the expected total cost of reaching Sc since the
cost of staying within Sc is zero. We omit the proof that Zpre
is transient here and refer the interested readers to [2], [14].
Our proposed solution to Problem 2 is based on transforming
it into a constrained optimization problems for MDPs, which
can be then solved using linear programming. The approach
is inspired by [14], [16], [17]. Particularly, denote by ys,u the
expected number of times over the infinite horizon that the
system is at state s and action u is taken, ∀s ∈ Sn and ∀u ∈
U(s), which are often referred to as occupancy measures [14]
as it holds ys,u =

∑∞
t=0 Pr

π
s0 [st = s, ut = u], where the

probability is conditioned on a policy π and the initial state s0.
Note that an occupancy measure is a sum of probabilities, but
not a probability itself. Consider the linear program:

min
{ys,u}

[
Cpre(Sc) ,

∑
(s,u)

∑
š∈Sp

ys,u pp(s, u, š) cp(s, u)

]
(8a)

s.t.
∑
(s,u)

∑
š∈Sc

ys,u pp(s, u, š) ≥ 1− γ; (8b)

∑
u∈U(š)

yš,u =
∑
(s,u)

ys,u pp(s, u, š) + 1(š = s0), ∀š ∈ Sn; (8c)

ys,u ≥ 0, ∀s ∈ Sn, ∀u ∈ U(s), (8d)

where
∑

(s,u) ,
∑
s∈Sn

∑
u∈U(s), the indicator func-

tion 1(š = s0) = 1 if š = s0 and 1(š = s0) = 0, otherwise.
Denote by Cpre(Sc) the objective function associated with Sc.
Let the solution of (8) be y?pre = {y?s,u, s ∈ Sn, u ∈ U(s)}.
Then the optimal stationary policy for the plan prefix, de-
noted by π?pre, can be derived as follows: the probability
of choosing action u at state s equals to π?pre(s, u) =
y?s,u/(

∑
u∈U(s) y

?
s,u) if

∑
u∈U(s) y

?
s,u 6= 0; otherwise, the

action at s can be chosen randomly, ∀s ∈ Sc.

Lemma 1. Given an optimal solution y?pre of (8), the asso-
ciated policy π?pre ensures that Prπ

?

s0 (3Sc) ≥ 1− γ.

Proof. First, ys,u is finite and well-defined since Zpre is
transient with respect to Sn,. The second part of the
proof is similar to Lemma 3.3 of [16]. The summa-
tion

∑
(s,u)

∑
š∈Sc

ys,u pp(s, u, š) is the expected number of
times that Zpre transitions from any state in Sn into Sc for
the first time, under policy π?pre from the initial state s0. Since
the system remains within Sc once it enters Sc, the summation
equals the probability of eventually reaching the set Sc, which
is lower-bounded by 1− γ. This completes the proof. �

0 2 4 6 8 10

x(m)

0

1

2

3

4

5

6

7

8

y
(m

)

base

Obs : 0.9

0 2 4 6 8 10

x(m)

0

1

2

3

4

5

6

7

8

y
(m

)

base

Obs : 0.9

Figure 3: Trajectories when setting γ = 0.4 (left) and γ = 0 (right).
The task is to reach the yellow base while avoiding the red cell.

Example 2. This example illustrates the important role of γ
in the trade-off between reducing the expected total cost and
minimizing the risk in Problem 2. Consider the unicycle robot
with action primitives illustrated in Figure 1 and defined in
Section V. The robot moves within partitioned cells as shown
in Figure 3, where the red cell has probability 0.9 to be
occupied by an obstacle. Consider the task: ϕ = (3�b) ∧
(�¬obs), i.e., to reach the yellow base without crossing any
obstacle. In what follows, we solve (8) under risk factors γ = 0
and γ = 0.4 to derive two different optimal policies. Figure 3
shows a shorter trajectory with lower expected total cost of
about 12.6 when a larger risk is allowed, compared with
the right trajectory that avoids completely colliding with the
obstacle, but with a much higher total cost of about 33.7. �

2) Plan Suffix with AMECs: In this section, we present an
algorithm to synthesize the plan suffix that minimizes the mean
total cost within the AMECs, while ensuring that the system
trajectory satisfies the accepting condition of P . Note that the
plan prefix π?pre from the previous section guarantees that the
system enters Sc from s0 with probability higher than 1− γ.
Recall also that Sc = ∪(S′c,U

′
c)∈Ξacc

S′c. Thus it is possible that
the system enters any set S′c within Ξacc. For this reason, we
propose to treat each AMEC (S′c, U

′
c) ∈ Ξacc separately, as

each S′c is associated with different U ′c and thus a different
accepting condition for S′c ∩ IiP . Specifically, consider any
AMEC (S′c, U

′
c) ∈ Ξacc and let I ′c , S′c ∩ I ′P , which is

nonempty by the definition of an AMEC.
Once the system enters any AMEC, most related work [4],

[17], [21] adopts the Round-Robin policy defined below:

Definition 4. For each state st ∈ S′c, create any ordered
sequence of actions from U ′c(st), denoted by U(st) and its
infinite repetition by U

ω
(st). Then at any stage t > 0,

whenever the system reaches st ∈ S′c, the Round-Robin policy
instructs the system to take the next action in U

ω
(st), starting

from the first action in U
ω

(st). �

Namely, once the system enters S′c, the Round-Robin policy
iterates over the allowed actions for each state, which in-turn
ensures that all states in S′c (which include I ′c) are visited
infinitely often. Detailed can be found in Lemma 10.119 in [4].

Definition 5. An accepting cyclic path of P , associated
with S′c and I ′c, is a finite path that starts from any state sf ∈ I ′c
and ends in any state sg ∈ I ′c, while remaining within S′c. �

Note that an accepting cyclic path does not necessarily start

7

and end at the same state in I ′c. Furthermore, we can define
the mean cyclic cost of P under a stationary policy.

Definition 6. The total cost of a cyclic path Pa =
s0u0s1u1 · · · sNauNa is defined as

Csuf(Pa) ,
Na∑
t=0

cD(st, ut) (9)

where Na ≥ 1 is the length of the path and s0, sNa ∈ I ′c. Then
its mean total cost is defined as Csuf(Pa) , 1

Na
Csuf(Pa). �

Problem 3. Find a stationary suffix policy π?suf for P
within S′c that minimizes the mean cyclic cost

Csuf(S′c, U
′
c) = EπPa∈Pa

{Csuf(Pa)}, (10)

where Pa is the set of all accepting cyclic paths associated
with the AMEC (S′c, U

′
c). �

Inspired by [20], [24], [33], we formulate a Linear Pro-
gram to solve the mean-payoff optimization problem. First,
we construct a modified sub-MDP Zsuf of P over S′c by
splitting I ′c into two virtual copies: Iin which only has
incoming transitions into I ′c and Iout that has only out-
going transitions from I ′c. Formally, we define Zsuf ,
(Se, Ue, Ee, y0, pe, ce), where the set of states is Se =
(S′c\I ′c) ∪ Iin ∪ Iout with Iin = {sinf , ∀sf ∈ I ′c} and Iout =
{soutf , ∀sf ∈ I ′c} the virtual copies of I ′c. The set of control
actions is Ue = U ∪ {τ0}, where τ0 is a self-loop action. The
set of state-action pairs Ee ⊂ Se×Ue is defined by (i) (s, u) ∈
Ee, ∀s ∈ S′c\I ′c and u ∈ U ′c(s); (ii) (s, τ0) ∈ Ee, ∀s ∈ Iin;
and (iii) (soutf , u) ∈ Ee, ∀sf ∈ I ′c and u ∈ U ′c(sf). Moreover,
y0 is the initial distribution of all states in S′c that can be
reached by taking a transition from states in S′n, defined by

y0(s) =
∑
š∈S′n

∑
u∈Up(š)

pp(š, u, s)ypre(š, u),∀s ∈ (S′c\I ′c)∪Iout,

where {ypre(s, u)} are the variables of (8). Furthermore, the
transition probability pe is defined in five cases below: (a) for
transitions within S′c\I ′c, it holds that pe(s, u, š) = pE(s, u, š),
∀s, š ∈ S′c\I ′c, ∀u ∈ Ue(s); (b) for transitions origi-
nated from Iout, it holds that pe(soutf , u, š) = pE(sf , u, š),
∀soutf ∈ Iout, ∀u ∈ Ue(soutf) and ∀š ∈ S′c\I ′c; (c) for
transitions into Iin, it holds that pe(s, u, sinf) = pE(s, u, sf),
∀s ∈ S′c\I ′c, ∀u ∈ Ue(s) and ∀sinf ∈ Iin; (d) for tran-
sitions from Iout to Iin, it holds that pe(soutf , u, sinf) =
pE(sf , u, sf), ∀soutf ∈ Iout and ∀u ∈ Ue(soutf); and (e)
for transitions within Iin, pe(sinf , τ0, s

in
f) = 1, ∀sinf ∈ Iin.

Lastly, the cost function satisfies ce(s, u) = cE(s, u), ∀s ∈
(Se\Iin), ∀u ∈ Ue(s), and ce(sinf , τ0) = 0, ∀sinf ∈ Iin.

Remark 3. The initial distribution y0 of Zsuf indicates how
likely it is that the system controlled by the plan prefix π?pre
will enter the AMEC (S′c, U

′
c) via each state inside S′c. �

Let also S′e , Se\Iin and denote by zs,u the long-run
frequency with which the system is at state s and the action u
is applied, ∀s ∈ S′e and ∀u ∈ Ue(s). Then, we can formulate

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Base1

Base3 Base2

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Base1

Base3 Base2

Figure 4: Simulated trajectory under π?
suf (left) and under the Round-

Robin policy (right), see Example 3.

the following linear program to solve Problem 3:

min
{zs,u}

[
Csuf(S′c, U

′
c) ,

∑
(s,u)

∑
š∈Se

zs,u pe(s, u, š) ce(s, u)

]
(11a)

s.t.
∑
(s,u)

∑
š∈Iin

zs,u pe(s, u, š) =
∑
s∈S′e

y0(s); (11b)

∑
u∈Ue(s)

zs,u =
∑
(š,u)

zš,u pe(š, u, s) + y0(s), ∀s ∈ S′e; (11c)

zs,u ≥ 0, ∀s ∈ S′e, ∀u ∈ Ue(s); (11d)

where
∑

(s,u) ,
∑
s∈S′e

∑
u∈Ue(s)

, the first constraint ensures
that Iin is eventually reached, while the second constraint
balances the incoming and outgoing flow at each state. Let its
solution be z?suf = {z?s,u, ∀s ∈ S′e, ∀u ∈ Ue(s)}. Then, the
optimal stationary policy for the plan suffix, denoted by π?suf,
can be derived as follows: the probability of choosing ac-
tion u at state s equals to π?suf(s, u) = z?s,u/(

∑
u∈Ue(s)

z?s,u)
if
∑
u∈Ue(s)

z?s,u 6= 0; otherwise the action at s is chosen
randomly, ∀s ∈ S′e. Note that π?suf(sf , u) = π?suf(soutf , u),
∀sf ∈ I ′c and ∀u ∈ U ′c(sf). Namely, once the system reaches
any state sg ∈ I ′c, the control policy at sg will be the control
policy for soutg ∈ Iout, according to the solution of (11).

Remark 4. The initial distribution is derived from (8), instead
of being arbitrarily set as in [25]; Moreover, (11b) ensures that
only I ′c is intersected infinitely often, instead of enforcing that
all states in the set S′c are visited infinitely often as in [25].�

Lemma 2. If (11) has a solution, then the plan suffix π?suf
solves Problem 3 for the chosen AMEC (S′c, U

′
c) ∈ Ξacc.

Proof. First, by Definition 5, the objective in (11) equals the
mean cyclic cost of all accepting cyclic paths for I ′c. Moreover,
by the definition of an AMEC, any path remains within S′e by
choosing only actions within U ′c(s) at each state s ∈ S′e. �

Lemma 3. Let τP be the set of all accepting runs of P that
enter S′c after a finite number of steps. If τP ∈ τP is generated
under π?suf, then τP satisfies the accepting condition of P .
Moreover, the mean total cost in (2) equals the mean cyclic
cost in (10), i.e., EτP∈τP{Cost(τP)} = Csuf(S′c, U

′
c).

Proof. By (11), any system trajectory of P under π?suf con-
tains infinite occurrences of accepting cyclic paths. Since any

8

accepting cyclic path starts from and ends in I ′c (which is fi-
nite), τP intersects with I ′c infinitely often. Moreover, since any
accepting cyclic path remains within S′c, τP remains within S′c
for all time after entering S′c. In other words, τP intersects
with Hi

P a finite number of times before entering S′c and then
intersects IiP infinitely often after entering S′c, which satisfies
the Rabin accepting condition of P . To show the second part,
notice that the product P under π?suf evolves as a Markov
chain and the set of all accepting cyclic paths within S′c has a
stationary distribution. By viewing any accepting run τP as the
concatenation of an infinite number of cyclic paths, the mean
total cost of τP defined in (4) over an infinite time horizon
equals the mean cyclic cost in (10) of all cyclic paths contained
in τP . This result is important in showing the equivalence
between Problems 1 and 3 later in Theorem 6. �

Example 3. This example illustrates the difference between
the plan suffix obtained by (11) and the Round-Robin policy.
Consider the same robot model from Example 2 and the parti-
tioned workspace in Figure 4. The task is to surveil three base
stations in the corners, i.e. ϕ = (�3b1)∧(�3b2)∧(�3b3).
The plan prefix is derived by solving (8) but two different
plan suffixes are used: one using (11) and the Round-Robin
policy. Figure 4 shows the simulated trajectory under these two
policies. It can be seen that the trajectory under the optimal
plan suffix approximates the shortest route to cross all base
stations, while the trajectory under the Round-Robin policy
exhibits a rather random behavior. �

3) Plan Synthesis when AECs do Not Exist: The synthesis
algorithms proposed in Sections IV-B1 and IV-B2 rely on the
assumption that the set of AMECs Ξacc of P is nonempty
which, however, might not hold in many scenarios. In this
case, most existing techniques proposed in [4], [17], [21], [22]
can not be applied. In this section, we first provide a simple
example where no AECs exist, and then propose an approach
to synthesize a relaxed plan prefix and suffix.

Example 4. This example provides a robot model M and its
task ϕ for which no AECs exist in the product automaton P .
Consider the MDPM in Figure 5 that transitions between two
states (S1, S2) with probability 1 using the action f . Note that
S1 has only probability 0.01 of being occupied by an obstacle
and S2 is the base station. The task is to surveil the base
station while avoiding obstacles, i.e., ϕ = (�3b)∧(�¬obs).
The associated DRA is shown in Figure 5. The resulting P
is shown in Figure 6, where the set of states HPi to avoid
in the suffix is in red and the set of states IPi to intersect
infinitely often in green. The reason that no AECs exist in P
is because by definition an AEC (S′, {f}) should include all
successor states that are reachable by the single action f . Then,
starting from any green state in IPi , the set of reachable states
eventually intersect with the red states in HPi . �

When no AECs exist in P , the probability of satisfying the
task under any policy is zero. However, it is still important to
identify those policies that ensure high probability of avoiding
bad states over long time intervals. Consequently, we propose
to use an accepting SCC (ASCC) of P as the relaxed AMEC,
due to the following lemma.

S1
{obs}: 0.01

{ }: 0.99

S2
{base}: 1.0

f: 1.0
f: 1.0

DRA

Safra[NBA=2]

0
 +0

 base&!obs

1
 +0

 !base&!obs 2
 -0

 !base&obs

 base&obs

 !base&obs
 base&obs

4

 !base&!obs

3
 base&!obs

 true

 !base&obs

 base&obs

 !base&!obs

 base&!obs

 base&!obs

 !base&!obs

 !base&obs

 base&obs

Figure 5: The MDP M (left) and DRA Aϕ (right, derived via [31],
[32]) described in Example 4, with one accepting pair ({2}, {0, 1}).

('s1', frozenset([]), 4)

('s1', frozenset(['obs']), 4)

('s2', frozenset(['goal']), 4)

('s1', frozenset(['obs']), 2)

('s2', frozenset(['goal']), 2) ('s1', frozenset([]), 2)

('s1', frozenset([]), 3)

('s1', frozenset(['obs']), 3)

('s2', frozenset(['goal']), 3)

('s2', frozenset(['goal']), 1)

('s1', frozenset([]), 1)

('s1', frozenset(['obs']), 1)

('s1', frozenset([]), 0)

('s2', frozenset(['goal']), 0)

('s1', frozenset(['obs']), 0)

('s2', frozenset([]), 2)

('s2', frozenset([]), 3)

('s2', frozenset([]), 0)

('s2', frozenset([]), 4)

('s2', frozenset([]), 1)

Figure 6: The product P of M and Aϕ in Figure 5. The state and
edge names are omitted as the structure is of importance here. At
least one green state should be visited infinitely often while avoiding
all red states. Note all transitions are driven by the action f .

Lemma 4. Assume there exists one infinite path of P that
is accepting. Then, there exists at least one SCC of P
that intersects with IiP but not with Hi

P , for at least one
pair (Hi

P , I
i
P) ∈ AccP .

Proof. As mentioned before, an infinite path of P , denoted
by RP , is accepting if for at least one pair (Hi

P , I
i
P) ∈ AccP

it holds that RP intersects with all states in Hi
P finitely often

while with IiP infinitely often. Since both Hi
P and IiP are finite,

there exists a cyclic path sk · · · sf · · · sk of P that contains at
least one sf ∈ IiP and does not contain any state within Hi

P .
By definition, this cyclic path is a SCC of P that intersects
with IiP but not with Hi

P . This completes the proof. �

Denote the set of SCCs in P as Ω , {S′1, S′2, · · · , S′C},
where S′c ⊆ S. This set can derived using Tarjans algo-
rithm [4], [32]. Moreover, denote by Ωiacc = {S′c ∈ Ω |S′c ∩
IiP 6= ∅, S′c∩Hi

P = ∅} the set of SCCs that satisfy the accept-
ing conditions associated with (Hi

P , I
i
P) ∈ AccP . Lemma 4

ensures that Ωiacc 6= ∅ for at least one pair (Hi
P , I

i
P) ∈ AccP .

Therefore, the union Ωacc , ∪i=1,··· ,N Ωiacc is not empty.
Now the union Sc , ∪S′c∈ΩaccS

′
c serves as the set of

states the system should enter, starting from the initial state,
and then remain inside any of the ASCC to satisfy the
accepting condition. Again the first step is to formulate a
Linear Program that minimizes the expected total cost of
reaching Sc from s0, while ensuring the risk is upper-bounded
by the chosen γprex > 0. It can be done analogously
as in (8) but over Sn , S\Sc (which is omitted here).
Denote the objective function by Cprex(Sc) and its set of
variables by {yprex(s, u)} and the associated relaxed plan
prefix as πprex. Same as in Section IV-B2, it is possible that
the system under the policy πprex can enter any ASCC in
Ωacc. Assume that the system enters S′c ∈ Ωacc. Different
from an AMEC (S′c, U

′
c) ∈ Ξacc, the action set at each state

of S′c ∈ Ωacc is not constrained. Thus, there is no guarantee
that the system will stay within S′c after entering it.

9

Therefore, the second step is to synthesize the relaxed
plan suffix that keeps the system inside S′c to satisfy the
accepting condition with the maximal probability. Define the
set I ′c = S′c ∩ IiP , which is not empty for an ASCC S′c. Then,
an accepting cyclic path of P associated with I ′c, and the cyclic
cost associated with S′c and I ′c can be defined similarly as in
Definition 5. Formally, we consider the following problem:

Problem 4. Find a control policy for P that mini-
mizes the mean cyclic cost associated with the ASCC S′c:
EπPa∈Pa

{Csufx(Pa)}, where Pa is the set of all accepting
cyclic paths associated with S′c and Csufx is defined as in
Definition 6; while at the same time maximizing the probabil-
ity that the cyclic paths stay within S′c. �

In Problem 4, the first objective of minimizing the mean
cyclic cost corresponds to minimizing the mean total cost
in (4) in Problem 1. The objective of maximizing the proba-
bility of the system staying within the ASCC S′c corresponds
to minimizing the frequency with which the system will reach
the bad states that violate the task specifications. It constitutes
a relaxation of the risk constraint (4) in Problem 1. To solve
Problem 4, first we construct a modified MDP Zsufx over S′c,
which is similar to Zsuf in Section IV-B2. The set I ′c is
split into two virtual copies: Iin which only has incoming
transitions and Iout that has only outgoing transitions. For-
mally, we define Zsufx = (Sr, Ur, Er, y0, pr, cr), where
the set of states is Sr = (S′c\I ′c) ∪ Iin ∪ Iout ∪ {sbad},
with Iin = {sinf , ∀sf ∈ I ′c} and Iout = {soutf , ∀sf ∈ I ′c}
the two virtual copies of I ′c, and sbad is a virtual bad state.
The set of control actions is given by Ur = U∪{τ0}, where τ0
is a self-loop action. The set of transition is Er ⊂ Sr × Ur
which satisfies that (i) (s, u) ∈ Er, ∀s ∈ S′c and u ∈ U(s);
(ii) (s, τ0) ∈ Er, ∀s ∈ Iin; and (iii) (sbad, τ0) ∈ Er.
Moreover, y0 is the initial distribution of states in S′c based
on the transition from states in S′n:

y0(s) =
∑
(š,u)

pp(š, u, s) yprex(š, u), ∀s ∈ (S′c\I ′c) ∪ Iout,

where
∑

(š,u) ,
∑
š∈S′n

∑
u∈Up(š)

and {yprex(s, u)} are the
variables solutions from the synthesis of the relaxed plan
prefix, and y0(sbad) = 0. Furthermore, the transition prob-
ability pr is defined in seven cases below: (a) for transitions
within S′c\I ′c, it holds that pr(s, u, š) = pE(s, u, š), ∀s, š ∈
S′c\I ′c, ∀u ∈ Ur(s); (b) for transitions originated from Iout, it
holds that pr(soutf , u, š) = pE(sf , u, š), ∀soutf ∈ Iout, ∀u ∈
Ur(soutf) and ∀š ∈ S′c\I ′c; (c) for transitions into Iin, it holds
that pr(s, u, sinf) = pE(s, u, sf), ∀s ∈ S′c\I ′c, ∀u ∈ Ur(s)
and ∀sinf ∈ Iin; (d) for transitions from Iout to Iin, it holds
that pr(soutf , u, sinf) = pE(sf , u, sf), ∀soutf ∈ Iout and ∀u ∈
Ur(soutf); (e) for transitions into the bad state sbad, it holds
that pr(s, u, sbad) = pE(s, u, š), ∀s ∈ S′c\Iin, ∀š ∈ S\S′c
and u ∈ Ur(s); (f) each state within Iin is included in a self-
loop such that pr(sinf , τ0, s

in
f) = 1, ∀sinf ∈ Iin; (g) the bad

state is included in a self-loop such that pr(sbad, τ0, sbad) =
1. Finally, the cost function cr is defined in two cases:
(i) cr(s, u) = cE(s, u), ∀s ∈ Sr\Iin, ∀u ∈ Ur(s); and
(ii) cr(sinf , τ0) = 0, ∀sinf ∈ Iin and cr(sbad, τ0) = 0.

Remark 5. Note that Er contains all actions for each state
in S′c, compared with Ee as allowed by the AMEC. �

Let S′r , Sr\(Iin ∪ {sbad}) and S′′r , Sr\{sbad}. We can
also show that Zsufx above is S′r−transient. Then, to solve
Problem 4, we rely on a technique proposed in [35] to deal
with dead ends in Stochastic Shortest Path (SSP) problems.
First we introduce a large positive penalty for reaching the
dead state, denoted by d > 0. Then, we modify (11) as follows:
denote by zs,u the long-run frequency with which the system
is at state s and the action u is taken, ∀s ∈ S′r and ∀u ∈ Ur(s).
We want to minimize the mean total cost of reaching Iin
from Iout, while minimizing the probability of leaving S′′s .
In particular, we consider the following optimization:

min
{zs,u}

[
Csufx(S′c, d) ,

∑
(š,u)

(∑
s∈S′′r

η(š, u, s) cr(š, u)

+ η(š, u, sbad) d
)]

(12a)

s.t.
∑

u∈Ur(s)

zs,u =
∑
(š,u)

η(š, u, s) + y0(s), ∀s ∈ S′r; (12b)

∑
(š,u)

(∑
s∈Iin

η(š, u, s) + η(š, u, sbad)

)
=
∑
s∈S′r

y0(s); (12c)

zs,u ≥ 0, ∀s ∈ S′r, ∀u ∈ Ur(s); (12d)

where the notation
∑

(š,u) ,
∑
š∈S′r

∑
u∈Ur(s)

, the vari-
ables satisfy that η(š, u, s) , zš,u pr(š, u, s), η(š, u, sbad) ,
zš,u pr(š, u, sbad), Csufx(S′c, d) denotes the objective function
as the summation of the mean cost of reaching Iin and the
expected penalty of reaching sbad. The first constraint balances
the incoming and outgoing flow at each state, while the second
constraint ensures that Iin ∪ {sbad} are eventually reached.
Let the optimal solution of (12) be z?sufx = {z?s,u, s ∈
S′r, u ∈ Ur(s)}. Then, the optimal stationary policy for
the relaxed plan suffix, denoted by π?sufx, can be derived
as follows: for states in S′r, the optimal policy is given
by π?sufx(s, u) = z?s,u/(

∑
u∈Ur(s)

z?s,u) if
∑
u∈Ur(s)

z?s,u 6= 0;
otherwise the action at s is chosen randomly, ∀s ∈ S′r. Note
that π?sufx(sf , u) = π?sufx(soutf , u), ∀sf ∈ I ′c and ∀u ∈ U(sf).

Lemma 5. Under the relaxed plan suffix π?sufx, the probability
of Zsufx reaching Iin from Iout while staying within S′′r
over an infinite horizon, is lower bounded by 1 − γsufx(d),
where γsufx(d) ,

∑
š∈S′r

∑
u∈Ur(š)

z?sufx(š, u) pr(š, u, sbad).

Proof. The proof is a simple inference from (12c). �

Remark 6. A lower bound can be enforced on γsufx as in (8).
However, this bound is hard to estimate and a large bound
can yield the problem infeasible. In contrast, (12) always has
a solution and γsufx(d) is tunable by varying d. �

C. The Complete Policy

In this section, we present how to combine the stationary
plan prefix and plan suffix of P into the complete finite-
memory policy of the original MDPM. Furthermore, we show
how to execute this finite-memory policy online.

10

1) Combining the Plan Prefix and Suffix: When AMECs
of P exist, we can combine the plan prefix synthesis and the
plan suffix synthesis for each AMEC into one Linear Program:

min
{ys,u,zs,u}

β · Cpre(Sc) + (1− β)
∑

(S′c,U
′
c)∈Ξacc

Csuf(S′c, U
′
c),

(13)
s.t. Constraints (8b)–(8d) and (11c)–(11d)

where Cpre(Sc) and Csuf(S′c, U
′
c) are defined in (8a) and

(11a), respectively, the variables {ys,u} satisfy the con-
straints (8b)–(8d) and (11c), and the variables zs,u ,
{zs,u(S′c),∀(S′c, U ′c) ∈ Ξacc}, where zs,u(S′c), satisfy the
constraints (11c)–(11d) for the AMEC (S′c, U

′
c) ∈ Ξacc. The

parameter 0 ≤ β ≤ 1 captures the importance of minimizing
the expected total cost to reach Sc versus stay in Sc. Note that
the initial conditions y0 in (11c) for each state in the suffix
are expressed over the variables {ys,u}. In other words, the
initial conditions of each AMEC are now optimized to solve
the combined objective function (13). It can be solved via any
Linear Programming solver, e.g., “Gurobi” [36] and “CPLEX”.
Once the optimal solution {y?s,u} and z?s,u is obtained, the
optimal plan prefix π?pre can be constructed as described in
Section IV-B1 and the plan suffix π?suf as in Section IV-B2.

On the other hand, when no AECs of P exist, as discussed
in Section IV-B3, we can combine the relaxed plan prefix and
suffix synthesis for each ASCC into one Linear Program:

min
{ys,u,zs,u}

β · Cprex(Sc) + (1− β)
∑

S′c∈Ωacc

Csufx(S′c, d),

(14)
s.t. Constraints (8b)–(8d) and (12b)–(12d)

where Cprex(Sc) and Csufx(S′c, d) are defined in (8a) and
(12a), respectively, the variables {ys,u} satisfy the constraints
(8b)–(8d), and the variables zs,u , {zs,u(S′c),∀S′c ∈ Ωacc},
where zs,u(S′c), satisfy the constraints (12b)–(12d) for the
ASCC S′c ∈ Ωacc. The parameter 0 ≤ β ≤ 1 captures the
importance of minimizing the expected total cost to reach Sc
versus stay in Sc. Similar to the previous case, the initial con-
ditions y0 in (12b) for each state in the ASCCs are expressed
over the variables {ys,u}. Thus the initial conditions are
now optimized to solve the combined objective function (14).
Again, it can be solved via any Linear Programming solver.
Once the optimal {y?s,u} and z?s,u is obtained, the optimal
relaxed plan prefix π?prex and relaxed plan suffix π?sufx can
be constructed as described in Section IV-B3.

Note that the size of both Linear Programs in (13) and (14)
is linear with respect to the number of transitions in P and can
be solved in polynomial time [37]. Note also that the multi-
objective costs introduced in (13) and (14) provide a balance
between optimizing the plan prefix and suffix. Compared to
only optimizing the plan suffix, i.e., for β = 0 as required to
solve Problems 3 and 4, increasing slightly the value of β can
lead to a significant decrease in the total cost of the plan prefix,
without sacrificing much the optimality in the plan suffix.

Observe that the optimal policy derived above only includes
the states within Sn ∪ Sc. Thus no policy is specified for the
bad states in Sd. Once the system reaches any bad state, it has

Algorithm 1: Complete Policy Synthesis
Input: P by Definition 2, γ, β
Output: the complete policy π?, µ?

if Ξacc 6= ∅ then
1. Construct Zpre, and Zsuf for
each (S′c, U

′
c) ∈ Ξacc.

2. Derive π? via solving (13), and (16).
else

1. Construct Zprex, and Zsufx for each S′c ∈ Ωacc.
2. Derive π? via solving (14), and (16).

3. Construct µ? from π? by (17)

violated the formula ϕ and can not satisfy it anymore. Thus, it
is common practice to stop the system once that happens [4],
[21]. We propose here a new method that allows the system to
recover from the bad state in Sd and continue performing the
task, which could be useful for partially-feasible tasks with
soft constraints, as discussed in [7].

Definition 7. The projected distance of a bad state sd =
〈x, l, q〉 ∈ Sd onto Sc ∪ Sn via u ∈ U(sd) is defined as:

κ(sd, u) ,
∑

š∈Sc∪Sn

D(l, χ(q, q̌))

|χ(q, q̌)|
·pE(x, u, x̌)·pL(x̌, ľ), (15)

where š , 〈x̌, ľ, q̌〉 and function D : 2AP × 22AP → N returns
the distance between an element l ∈ 2AP and a set χ ⊆ 2AP ,
was firstly introduced in [7] and restated below. �

Simply speaking, κ(sd, u) evaluates how much the product
automaton P is violated on the average if the bad state sd ∈
Sd is projected into the set of good states Sc ∪ Sn using
action u ∈ U(sd). Function D(`, χ) = 0 if ` ∈ χ and
D(`, χ) = min`′∈χ |{a ∈ AP | a ∈ `, a /∈ `′}|, otherwise.
Namely, it returns the minimal difference between ` and any
element in χ. Given κ(·), the policy at sd ∈ Sd is given by

π?(sd, u) =

{
1 for u = argminu∈U(sd)κ(sd, u);

0 other u ∈ U(sd),
(16)

which chooses the single action that minimizes (15). Comb-
ing (13), (14) and (16) provides the complete policy for P .
The above discussions are summarized in Algorithm 1.

2) Mapping π? to µ?: Lastly, we need to map the optimal
stationary policy π? of P above to the optimal finite-memory
policy µ? of M. Starting from stage t = 0, the initial
state s0 = 〈x0, l0, q0〉 ∈ Sn and the optimal action to take
is given by the distribution π?(s0). Assume that u ∈ U(s0) is
taken. Then at stage t = 1, the robot observes its resulting
state x1 and the label l1. Thus the subsequent state in P
is s1 = 〈x1, l1, q1〉, where q1 = δ(q0, l0) is unique as Aϕ
is deterministic. The optimal action to take now is given by
the distribution π?(s1). This process repeats itself indefinitely.
Denote by st ∈ S the reachable state at stage t ≥ 0
which is always unique given the robot’s past sequence of
states Xt = x0x1 · · ·xt and labels Lt = l0l1 · · · lt. Thus the
optimal policy µ? at stage t ≥ 0 given Xt and Lt is

µ?(Xt, Lt) = π?(st), (17)

11

i.e., the control policy at the reachable state st in P is
the best control policy in M at stage t, ∀t ≥ 0. Last but
not least, if the system reaches a bad state at stage t − 1,
i.e., st−1 ∈ Sd, according to policy (16) the robot will take
action u? and more importantly the next reachable state is
set to be st , 〈xt, lt, q′t〉 ∈ (Sc ∪ Sn), where xt, lt are
the observed robot location and label at stage t and q′t ,
argminq̌∈Post(qt−1)D(lt−1, χ(qt−1, q̌)).

Theorem 6. Algorithm 1 solves Problem 1 if AECs of P
exist and β = 0. Otherwise, if no AECs of P exist,
then Problem 1 has no solution. In this case, Algorithm 1
provides a relaxed policy that minimizes the relaxed suffix
cost Csufx(S′c, d) defined in (12). Moreover, given any finite
run ST = s0s1 · · · sT of P under the optimal policy π?, the
probability that ST does not intersect with the set of bad
states Sd for all time t ∈ [0, T] is bounded as

Pr(st /∈ Sd,∀t ∈ [0, T]) ≥ (1− γprex) · (1− γsufx(d))Ns ,

where Ns ≥ 0 is the number of accepting cyclic paths
contained in ST that depends on T .

Proof. To show the first part of this theorem, similar to
Lemma 1, the constraints of (8b)–(8d) ensures that the total
probability of reaching the union of all AMECs is lower-
bounded by 1−γ. Moreover, the first part of Lemma 3 shows
that any infinite run τP of P would satisfy ϕ once it enters
any AMEC (S′c, U

′
c) ∈ Ξacc, by following the plan suffix.

The fact that π? also minimizes the mean total cost in (4)
when β = 0 in (13) can be shown as follows: as discussed
in [24], [33], [34], the mean payoff objective depends on how
the system suffix behaves within the AMECs. The second
part of Lemma 3 guarantees that the derived plan suffix π?suf
minimizes the mean total cost of staying within any of the
AMECs, while satisfying the accepting condition.

To show the second part of the theorem, no solution
to Problem 1 exists regardless of the choice of γ, as the
probability of satisfying the task is zero. Instead, when β = 0,
the optimal policy π? obtained by Algorithm 1 minimizes the
relaxed suffix cost Csufx(S′c, d). At the same time, due to
the constraints in (8) that are also present in (13), the plan
prefix π?prex ensures that all runs stay within Sn with at least
probability (1− γprex) before entering any ASCC S′c ∈ Ωacc,
while the relaxed plan suffix π?sufx ensures that the runs stay
within S′c with at least probability (1 − γsufx(d)) for one
execution of any accepting cyclic path. Consequently, if the
finite run contains Ns accepting cyclic paths, the probability of
avoiding Sd, is lower bounded by (1−γprex)·(1−γsufx(d))Ns .
Even though this probability approaches zero as Ns ap-
proaches infinity, this result still ensures that the frequency
of visiting bad states over finite intervals is minimized. �

3) Policy Execution: Clearly, the optimal policy µ?

from (17) requires only a finite memory to save the current
reachable state st and the optimal policy π?. It is synthesized
off-line once via Algorithm 1 and its online execution involves
observing the current state xt and label lt, updating the
reachable state st, and applying the action according to π?(st).
Details are given in Algorithm 2.

Algorithm 2: Policy Execution
Input: M, ϕ, observed state xt and label lt at

stage t ≥ 0
Output: µ? and ut at stage t ≥ 0
1. Offline: Construct P and synthesize π? by Alg. 1.
2. At t = 0: set s0 = 〈x0, l0, q0〉 and apply u0 ∼ π?(s0).
3. while t = 1, 2, · · · do

observe xt and lt.
if st−1 /∈ Sd then

Set st = 〈xt, lt, qt〉, where qt = δ(qt−1, lt−1).
else

Set st = 〈xt, lt, q′t〉 ∈ (Sn ∪ Sc).
Apply action ut ∼ π?(st).

V. SIMULATION RESULTS

In this section, we present simulation results to validate
the scheme. All algorithms are implemented in Python 2.7
and available online [32]. All simulations are carried out on a
laptop (3.06GHz Duo CPU and 8GB of RAM).

A. Model Description
We consider a partitioned 10m× 10m workspace as shown

in Figure 8, where each cell is a 2m × 2m area. The prop-
erties of interest are {Obs,b1,b2,b3,Spl}. The properties
satisfied at each cell are probabilistic: three cells at the corners
satisfy b1, b2 and b3, respectively with probability one. Four
cells at (1m, 5m), (5m, 3m), (9m, 5m), (5m, 9m) satisfy Spl
with probabilities ranging from 0.2 to 0.8, modeling the
likelihood that a supply appears at that particular cell. One cell
at (5m, 1m) satisfies Obs with probability 0.7. Other obstacles
will be described later upon different task scenarios.

The robot motion follows the unicycle model, i.e., ẋ =
v cos(θ), ẏ = v sin(θ), θ̇ = ω, where p(t) = (x(t), y(t)) ∈
R2, θ(t) ∈ (−pi, pi] are the robot’s position and orientation
at time t ≥ 0. The control input is u(t) = (v(t), ω(t)) and
contains the linear and angular velocities. Due to actuation
noise and drifting, the robot’s motion is subject to uncertainty.
The action primitives and the associated uncertainties are
shown in Figure 1 and described below: action “FR” means
driving forward for 2m by setting v(t) = v0 and ω(t) = 0,
∀t = [0, 2/v0]. This action has probability 0.8 of reaching 2m
forward and probability 0.1 of drifting to the left or right
by 2m, respectively; action “BK” can be defined analogously
to “FR”; action “TR” means turning right by an angle of pi/2
by setting v(t) = 0 and ω(t) = −ω0, ∀t = [0, pi/(2ω0)]. This
action has probability 0.9 of turning to the right by pi/2,
probability 0.05 of turning less than pi/4 due to undershoot
and probability 0.05 of turning more than 3pi/4 due to
overshoot; action “TL” can be defined analogously to “TR”;
lastly, action “ST” means staying still by setting v(t) =
ω(t) = 0, ∀t = [0, T0] where T0 is the chosen waiting time.
It has probability 1.0 of staying where it is. The cost of each
action is given by [2, 4, 3, 3, 1], respectively, where the cost
of “ST” is set to 1 as it consumes time to wait at one cell.

With the above model, we can abstract the robot state by
the cell coordinate in which it belongs, namely, (xc, yc) ∈

12

γ Total Cost Failure Success Unfinished
0 132.2 0 910 90

0.1 118.1 99 872 29
0.2 110.5 219 770 11
0.3 104.6 308 692 0
0.4 98.3 417 583 0

Table I: Statistics of 1000 Monte Carlo simulations of 500 time steps,
under different γ for task (18).

0 50 100 150 200 250 300

Suffix cost

0.00

0.01

0.02

0.03

0.04

0.05

D
is
tr
ib
u
ti
on

Optimized
Strategy

0 100 200 300 400 500 600 700 800

Suffix cost

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Round-Robin

Figure 7: The normalized distribution of the total cost of accepting
cyclic paths from 1000 Monte Carlo simulations under the optimal
plan suffix (left) and the Round-Robin policy (right), for task (19).

{1, 3, · · · , 9}2 and its four possible orientations (N,E, S,W).
The transition relation and probability can be built following
the description above. The resulting probabilistically-labeled
MDP has 100 states and 816 edges.

In the sequel, we consider three different task formulas in
the order of increasing complexity. We used “Gurobi” [36] to
solve the Linear Programs in (13) and (14). When comparing
the performance in the plan suffix, we also use the total cost
in (9) as an indicator, especially when the difference in the
mean total cost in (10) is too small to measure.

B. Ordered Reachability

In this case, we show the trade-off between reducing the
expected total cost and decreasing the risk factor in the plan
prefix synthesis using (8). In particular, the robot needs to
reach b1, b2, b3 (in this order) from the initial cell while
avoiding obstacles for all time. Afterwards it should stay at b3.
The LTL formula for this task is

ϕ1 = (3(b1∧3(b2∧3b3)))∧ (�¬Obs)∧ (3�b3). (18)

The associated DRA derived using [31] has 7 states, 24 tran-
sitions and 1 accepting pair. An additional obstacle is added
which has probability 0.7 of appearing in the cell (5m, 9m).

It took 10.9s to construct the product automaton which
has 840 states, 7280 transitions. Since one AMEC exists,
we synthesize the optimal policy using Algorithm 1 via
solving (13) under β = 0.5 and different risk factors γ chosen
from {0, 0.1, · · · , 0.4}, which took on average 0.1s. Then, we
perform 1000 Monte Carlo simulations of 500 time steps each,
where we evaluate the total cost in (7) and whether the task is

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Sply : 0.5

Base1Obs : 1.0

Sply : 0.8

Base3

Sply : 0.2

Base2

Sply : 0.5

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Sply : 0.5

Base1Obs : 1.0

Sply : 0.8

Base3

Sply : 0.2

Base2

Sply : 0.5

Figure 8: Simulated trajectory suffix under the optimized plan suffix
is applied (left) and the Round-Robin policy (right).

satisfied. As shown in Table I, the total cost increases when the
allowed risk factor γ is decreased. The percentage of simulated
runs that collide with an obstacle is approximately (1 − γ),
which verifies the risk constraint in Lemma 1.

C. Surveillance

In this case, we compare the efficiency of the optimal
plan suffix from Algorithm 1 and the Round-Robin policy.
Particularly, the robot should visit b1, b2 and b3 infinitely
often for surveillance and avoid all obstacles:

ϕ2 = (�3b1) ∧ (�3b2) ∧ (�3b3) ∧ (�¬Obs). (19)

The associated DRA has 8 states, 30 transitions, and 1
accepting pair. It took 5.8s to construct the product P which
has 700 states, 5712 transitions and 1 accepting pair. Since
one AMEC exists in the product, we synthesize the optimal
policy using Algorithm 1 via solving (13) under γ = 0 and
β = 0.1, which took 0.2s. We conducted 1000 Monte Carlo
simulations and Figure 7 shows that the total cost from (9)
of accepting cyclic paths in the plan suffix under the optimal
policy is much lower than the Round-Robin policy (50 versus
400). Moreover, Figure 9 shows that the average number of
times each base station is visited by the robot under the optimal
policy is much higher than under the Round-Robin policy.

D. Ordered Supply-delivery

In this case, we demonstrate the reactiveness of the derived
optimal policy. The robot needs to collect supplies from
the cells that are marked by Spl, where supplies appear
probabilistically. Then it needs to transport these supplies to
each base station. Furthermore, the robot should not visit two
base stations consecutively without collecting a supply first. It
should always avoid obstacles. The LTL task formula is

ϕ = ϕall_base ∧ ϕorder ∧ (�¬Obs), (20)

where ϕall_base = (�3b1)∧(�3b2)∧(�3b3) means that
all base stations should be visited infinitely often and ϕorder =
�(ϕone →©((¬ϕone)USpl)), with ϕone = (b1∨b2∨b3)
means that when one base station is visited, then no base can
be visited until a supply has been collected. The associated
DRA is derived using [31], [32] in 0.05s, which has 32
states, 298 transitions and 1 accepting pair.

13

M P AMECs Ξacc π? via (13)

Size Time [s] Size Time [s] Size Time [s] Size of (8) Size of (11) Time to solve (13) [s]

(100, 816) 0.13 (4.2e3, 4.1e4) 16.3 1.2e3 4.15 (443, 2.0e3, 8.3e3) (1.2e3, 4.9e3, 2.1e4) 0.21
(324, 2.8e3) 1.69 (1.1e4, 1.0e5) 41.2 3.6e3 29.4 (1.3e3, 6.3e3, 2.2e4) (3.6e3, 1.7e4, 5.9e4) 0.72
(900, 8.4e3) 24.2 (2.9e4, 2.8e5) 106.8 1.0e4 337.1 (3.6e3, 1.7e4, 6.0e4) (9.9e3, 4.8e4, 1.6e5) 16.74

(1.4e3, 1.3e4) 88.7 (4.7e4, 4.5e5) 391.7 1.6e4 1.1e3 (5.8e3, 2.8e4, 9.7e4) (1.5e4, 7.7e4, 2.6e5) 20.81
(2.5e3, 2.4e4) 326.9 (8.1e4, 7.8e5) 290.1 2.7e4 4.8e3 (1.0e4, 4.9e4, 1.6e5) (2.7e4, 1.3e5, 4.5e5) 15.74
(3.3e3, 3.2e4) 558.3 (1.0e5, 1.1e6) 380.1 3.7e4 9.4e3 (1.3e4, 6.6e4, 2.2e5) (3.7e4, 1.8e5, 6.1e5) 32.04

Table II: Size and computation time of various models M as described in Section V-E under task (20). The notation aeb , a × 10b

for a,b > 0. The size of M, Aϕ and P includes the number of states and transitions. The size of LP problems (13) which contains (8)
and (11) includes the number of rows, columns and variables in the linear equations, as indicated by the “Gurobi” solver [36].

β Prefix Cost Suffix Cost Balanced Cost
by (13)Total Mean

0 180.7 66.1 2.524 66.1
0.2 62.4 67.1 2.533 65.2
0.4 50.5 72.9 2.551 64.1
0.6 49.8 73.5 2.552 59.3
0.8 49.5 74.3 2.554 54.4
1.0 49.5 246.7 2.817 49.5

Table III: The optimal prefix cost, suffix cost and the balanced cost
as defined in (13) of task (20) under different β with γ = 0.

It took around 16s to construct the product automaton that
has 4224 states, 41344 transitions and 1 accepting pair. Since
two AMECs exist in the product, we synthesize the optimal
policy using Algorithm 1 via solving (13) under γ = 0 and
β = 0.1, which took around 0.2s given the complexity of
task (20). Notice that the optimal plan sometimes requires the
robot to wait at a cell marked by Spl by taking action “ST”,
since the expected cost of traveling to another cell with supply
might be higher than waiting there for the supply to appear.
Figure 8 compares the simulated trajectories under the optimal
policy and the Round-robin policy. Based on 1000 Monte
Carlo simulations, the total cost of accepting cyclic paths
is much lower under the optimal policy than the Round-
Robin policy (70 versus 550). Furthermore, Figure 9 shows
the average number of supplies received at each base under
these two policies. It can be seen that much more supplies
are received at each base station under the optimal policy.
Simulation videos of both cases can be found in [38]. Lastly,
to show how the choice of β in (13) affects the optimal prefix
and suffix cost, we repeat the above procedure for different β
and the results are summarized in Table III. In the table, the
prefix cost equals to Cpre(Sc), the mean suffix cost equals to∑

(S′c,U
′
c)∈Ξacc

Csuf(S′c, U
′
c) from (13). The total suffix cost is

computed based on (9) in order to magnify the changes in the
suffix cost. It can be noticed that for small non-zero values
of β, less 0.2, the optimal prefix cost is reduced dramatically
(from 180.7 to 62.4), without increasing much the optimal
suffix cost (from 66.1 to 67.1).

In order to demonstrate scalability and computational com-
plexity of the proposed algorithm, we repeat the policy syn-
thesis under the same task (20) but for workspaces of various
sizes. Particularly, we increase the number of cells from 52

to 92, 152, 192, 252, 292. The size of resultingM, P , Ξacc and

0 50 100 150 200 250 300

Time

0

10

20

30

40

50

R
ec
ei
v
ed
S
u
pp
ly

Opt Base1

Opt Base2

Opt Base3

RR Base1

RR Base2

RR Base3

0 100 200 300 400 500

Time

0

5

10

15

20

25

30

35

40

R
ec
ei
v
ed
S
u
pp
ly

Opt Base1

Opt Base2

Opt Base3

RR Base1

RR Base2

RR Base3

Figure 9: Left: the average number of times each base is visited, for
task (19). Right: the average number of supplies received at each
base for task (20). The optimal policy is shown in solid lines while
the Round-Robin policy in dashed lines.

the time taken to compute them are shown in Table II, where
we also list the complexity of the LP (13), which consists
of (8) and (11), and the time taken to solve (13). It can be
seen from Table II that solving (13) requires a small fraction
of total time, compared to the construction ofM, P and Ξacc.

E. Surveillance with Clustered Obstacles

In this case, we demonstrate how the relaxed plan prefix
and suffix can be synthesized under scenarios where no AECs
can be found. In particular, we consider the surveillance task
in (19) but more obstacles are placed in the workspace as
shown in Figure 10. The center cell (5m, 5m) has probabil-
ity 0.9 of being occupied by an obstacle and the four cells
above and on the left have probability 0.01 of being occupied
by an obstacle. Thus, b1 is surrounded by possible obstacles
around it, even though the probability is very low.

The resulting product automaton has 1184 states, 13888
transitions, and 1 accepting pair. It can be verified that no
AECs exist in P and thus the second case of Algorithm 1
is activated, where the optimal solution is derived by solv-
ing (14). We synthesize the relaxed optimal policy under
different γprex and d, as shown in Table IV. It took in
average 37s to synthesize the complete policy for β = 0.1
and any chosen γprex and d in this case. Recall that d is a
large positive penalty for entering the set of bad states in (12).
In particular, we first choose γprex = 0.1 and d = 300.
Two simulated trajectories under the derived policy are shown
in Figure 10. Furthermore, we perform 1000 Monte Carlo
simulation under the γprex and d listed in Table IV, where
we compare the number of times that the robot fails the

14

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Obs : 0.01

Base1

Obs : 0.9

Obs : 0.01

Obs : 0.01

Base3 Base2

Obs : 0.01

0 2 4 6 8 10

x(m)

0

2

4

6

8

10

y
(m

)

Obs : 0.01

Base1

Obs : 0.9

Obs : 0.01

Obs : 0.01

Base3 Base2

Obs : 0.01

Figure 10: Two simulated trajectories of 200 time steps for the
surveillance task (19), under the relaxed optimal policy.

task by colliding with obstacles (the failure), the number of
times that the robot successfully reaches the set of ASCC Sc
(the prefix success), and the number of times that the robot
successfully executes one accepting cyclic path associated
with S′c and I ′c of one ASCC (the suffix success). It can be seen
that (1− (1−γprex)(1−γsufx)), (1−γprex) and (1−γsufx)
matches very well the probability of failure, the prefix success,
and the suffix success, respectively, as discussed in Theorem 6.
Also, it can be seen that the system can recover from the
bad states and continue executing the task if the recovery
policy proposed in (16) is activated. It can also be seen that
increasing γprex leads to a lower prefix success rate and
decreasing d leads to a lower suffix success rate.

To demonstrate scalability and computational complexity of
the proposed algorithm when AMECs do not exist, we repeat
the policy synthesis under the same task (19) but for different
workspaces of various sizes, as in Section V-D. We set γ =
0.3, d = 300 and β = 0.1. The size of resulting M, P , Ωacc
and the time taken to compute them are shown in Table V,
where we also list the complexity of the (14), which consists
of (8) and (12), and the time taken to solve (14). It can be
seen above that solving (14) now requires a larger fraction of
total time, compared to the construction of M, P and Ωacc.
However, it requires much less time to compute the set of
ASCCs Ωacc than the set of AMECs Ξacc. For instance, in
the case of 292 cells in the workspace, it took around 23.1
seconds to construct P (which has approximately 2.8 × 104

states and 2.9×105 transitions) and 19.6 seconds to construct
its ASCCs (compared with 160 minutes in Table II). Once (14)
is constructed, it took around 2.5 minutes to solve it.

F. Comparison with PRISM

In this section we compare the proposed algorithm to the
widely-used model-checking tool PRISM [13]. The follow-
ing results were obtained using PRISM 4.3.1, where Linear
Programming is chosen as the solution method. First, since
PRISM does not take the probabilistically-labeled MDP in (1)
as inputs, we translate the product automaton in (5) into
PRISM language and verify its Rabin accepting condition
directly. Implementation details can be found in [32]. For
tasks (18), (19) and (20), PRISM verifies that the probability
of satisfying each of them is 1.0, within time 0.46s, 0.38s
and 6.4s, respectively. The difference in computation time is

γprex d γsufx Failure Pre. Success Suf. Success
0.1 300 0.05 106 894 852
0.2 300 0.05 169 831 785
0.3 300 0.05 318 682 650
0.4 300 0.05 409 591 549
0.1 280 0.85 888 901 117
0.1 270 0.98 997 903 4

Table IV: Statistics of 1000 Monte Carlo simulations under differ-
ent γprex and d, for task (19) in Section V-E.

Figure 11: The experiment workspace (left) with the monitoring
panel. Three bases are marked by yellow tapes, while the tripod
represents the obstacle. The monitoring panel displays the real-time
position, the control policy, the motion uncertainty and the robot
status (being in prefix (green) or in suffix (magenta)). Customizable
virtual experiment platform (right) in V-REP for task (19) where no
AMECs can be found in the product, see [32] and [40].

likely due to the difference in the LP solvers. Second, in order
to test different values of γ, we use the “multi-objective prop-
erty” to find the minimal cumulative reward while ensuring
the risk of violating the task is bounded by γ. Note that the
associated model has to be the modified product model Zpre
defined in Section IV-B1 as PRISM does not currently support
multi-objective property with the “F target” operator (i.e.,
3Sc). The computation time is approximately the same as in
the previous cases. Last, the current PRISM version does not
support the mean-payoff optimization in the AMECs, nor does
it generate the relaxed control policy for the case where no
AMECs exist in the product automaton. In fact, PRISM will
simply return that the maximal probability of satisfying the
task is 0. The MultiGain tool recently proposed in [34] can
handle multiple mean-payoff constraints but does not allow
the tuning of the satisfaction probability (1− γ).

VI. EXPERIMENTAL STUDY

In this section, we present an experimental study. We use a
differential-driven “iRobot” whose position we track in real-
time via an Optitrack motion capture system. The communica-
tion among the planning module, the robot actuation module,
and the Optitrack is handled by the Robot Operating System
(ROS). The software implementation for this experiment is
available in [39]. The experiment videos are online [40].

A. Model Description

Consider the 2.5m×1.5m experiment workspace as shown
in Figure 11, with three base stations located at the corners
and one obstacle region. It consists of 5 × 3 square cells of
dimension 0.5m × 0.5m each. The robot’s motion within
the workspace is abstracted similarly as in Section V-A. The
resulting MDP has 60 states and 456 edges.

15

M P ASCCs Ωacc π? via (14)

Size Time [s] Size Time [s] Size Time [s] Size of (8) Size of (12) Time to solve (14) [s]

(100, 816) 0.13 (1.0e3, 1.1e4) 0.9 3.1e2 0.66 (202, 920, 3.4e3) (301, 1.4e3, 4.9e3) 0.45
(324, 2.8e3) 1.57 (2.9e3, 3.1e4) 3.39 9.8e2 1.84 (6.5e2, 3.1e3, 1.1e4) (9.7e2, 4.7e3, 1.6e4) 2.41
(900, 8.4e3) 23.9 (7.7e3, 7.9e4) 7.04 2.7e3 5.09 (1.8e3, 8.7e3, 3.0e4) (2.7e3, 1.3e4, 4.5e4) 9.89

(1.4e3, 1.3e4) 92.2 (1.2e4, 1.2e5) 9.78 4.3e3 8.41 (2.9e3, 1.4e4, 4.9e4) (4.3e3, 2.1e4, 7.2e4) 22.94
(2.5e3, 2.4e4) 322.1 (2.1e4, 2.1e5) 20.1 7.5e3 17.1 (5.1e3, 2.5e4, 8.5e4) (7.5e3, 3.7e4, 1.3e5) 83.33
(3.3e3, 3.2e4) 625.2 (2.8e4, 2.9e5) 23.1 1.0e4 19.6 (6.7e3, 3.3e4, 1.1e5) (1.0e4, 4.9e4, 1.7e5) 145.8

Table V: Size and computation time of various models M under task (19) where no AECs exist in P . The notations are defined similarly
as in Table II. In this case, the combined LP in (14) contains (8) and (12) instead.

0.0 0.5 1.0 1.5 2.0 2.5

x(m)

0.0

0.5

1.0

1.5

y
(m

)

base2Obsbase3

base1

0.0 0.5 1.0 1.5 2.0 2.5

x(m)

0.0

0.5

1.0

1.5

y
(m

)

base2

Obs

base3

base1

Figure 12: The robot trajectory to satisfy task (18) (left) and (19)
(right) when γ = 0, sampled at every 15s.

B. Experimental Results

We consider two different tasks: first the sequential visiting
task (18) and then the surveillance task (19).

1) Sequential Visiting Task: The LTL task formula is
given in (18) and the associated DRA is constructed in
Section V-B. The obstacle has probability 0.1 of appearing
in the cell (1.25m, 1.25m). The resulting product automaton
in this case has 532 states and 4228 edges and 1 accepting pair.
For γ = 0 and β = 0.1, it took 3.16s to synthesize the com-
plete policy using Algorithm 1, resulting in an average prefix
cost 47.72 and suffix cost 1.0. Then the robot was controlled
in real-time using Algorithm 2. The robot state was retrieved
using the motion capture system and the observed label was
generated randomly. The complete video is online [40] and the
resulting trajectory shown in Figure 12. Notice that the robot
avoids completely collision with the obstacle.

2) Surveillance Task: The LTL task formula is given
in (19) and the associated DRA is constructed in Sec-
tion V-B. The obstacle has probability 0.1 of appearing in
the cell (1.25m, 0.75cm). The resulting product automaton in
this case has 608 states, 4992 edges, and 1 accepting pair.

In the first experiment, we choose γ = 0 and β = 0.1 so
that there is no risk allowed in the plan prefix. It took 5.2s
to synthesize the complete plan offline using Algorithm 1.
The real-time execution of the system followed Algorithm 2.
The resulting trajectory is shown in Figure 12. In the second
experiment, we selected γ = 0.1 and β = 0.1 to allow risk
in the plan prefix. It took 4.9s to synthesize the complete
policy. Compared to the case where γ = 0, the optimal policy
instructs the robot to move forward, straight to the base station
at (2.25m, 0.25m), even though there is a risk of colliding
with the obstacle at (1.25m, 0.75m) due to the uncertainty in
its forward action. Both experiment videos are online [40].

Lastly, to demonstrate the proposed scheme for much larger
workspaces and more complex tasks, particularly when no
AMECs can be found in the product automaton, we create
a virtual experiment platform based on V-REP [41], which
is available in [32]. A snapshot is shown in Figure 11. The
user can easily change the configuration of the workspace
and the robot task specification. Once the control policy is
synthesized via Algorithm 1 and saved, the user can perform
any number of test runs in this environment. Demonstration
videos are online [40] where we replicate the surveillance
task with clustered obstacles from Section V-E. It can be seen
that the relaxed control policy can ensure high probability of
avoiding bad states over long time intervals.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a plan synthesis algorithm for
probabilistic motion planning, subject to high-level LTL task
formulas and risk constraints. Uncertainties in both the robot
motion and the workspace properties are considered. We
obtain optimal policies that optimize the total cost both in the
prefix and suffix of the system trajectory. We also address the
case where no AECs exist in the product automaton in which
case the probability of satisfying the task is zero. The proposed
solution provides provable guarantees on the probabilistic sat-
isfiability and the mean total-cost optimality, and is verified via
both numerical simulations and experimental studies. Future
work involves extensions to multi-robot systems.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[2] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[3] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[4] C. Baier and J.-P. Katoen, Principles of model checking. MIT press
Cambridge, 2008.

[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion,” Robotics &
Automation Magazine, IEEE, vol. 14, no. 1, pp. 61–70, 2007.

[6] M. Guo, M. Egerstedt, and D. V. Dimarogonas, “Hybrid control of
multi-robot systems using embedded graph grammars,” in Robotics and
Automation (ICRA), IEEE International Conference on, 2016.

[7] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[8] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
markov decision processes with temporal logic specifications,” in Deci-
sion and Control (CDC), Conference on. IEEE, 2012, pp. 3372–3379.

16

[9] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification and
synthesis for discrete-time stochastic systems,” Automatic Control, IEEE
Transactions on, vol. 60, no. 8, pp. 2031–2045, 2015.

[10] I. Cizelj and C. Belta, “Control of noisy differential-drive vehicles from
time-bounded temporal logic specifications,” The International Journal
of Robotics Research, vol. 33, no. 8, pp. 1112–1129, 2014.

[11] A. Ulusoy, T. Wongpiromsarn, and C. Belta, “Incremental controller
synthesis in probabilistic environments with temporal logic constraints,”
The International Journal of Robotics Research, vol. 33, no. 8, pp. 1130–
1144, 2014.

[12] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, pp. 399–408,
2014.

[13] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” in Computer aided verification.
Springer, 2011, pp. 585–591.

[14] E. Altman, “Constrained markov decision processes with total cost
criteria: Occupation measures and primal lp,” Mathematical methods
of operations research, vol. 43, no. 1, pp. 45–72, 1996.

[15] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, 2013.

[16] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis, “Multi-
objective model checking of markov decision processes,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2007, pp. 50–65.

[17] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Quan-
titative multi-objective verification for probabilistic systems,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 112–127.

[18] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for prob-
abilistic model checking,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2012, pp. 317–332.

[19] M. Randour, J.-F. Raskin, and O. Sankur, “Variations on the stochastic
shortest path problem,” in International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 2015, pp. 1–18.

[20] ——, “Percentile queries in multi-dimensional markov decision pro-
cesses,” in International Conference on Computer Aided Verification.
Springer, 2015, pp. 123–139.

[21] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Mdp optimal control
under temporal logic constraints,” in Decision and Control (CDC), IEEE
Conference on, 2011, pp. 532–538.

[22] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of markov
decision processes with linear temporal logic constraints,” Automatic
Control, IEEE Transactions on, vol. 59, no. 5, pp. 1244–1257, 2014.

[23] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning for
surveillance with temporal-logic constraints,” The International Journal
of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[24] K. Chatterjee and L. Doyen, “Energy and mean-payoff parity markov
decision processes,” in International Symposium on Mathematical Foun-
dations of Computer Science. Springer, 2011, pp. 206–218.

[25] J. Fu and U. Topcu, “Pareto efficiency in synthesizing shared autonomy
policies with temporal logic constraints,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 361–368.

[26] V. Bruyere, E. Filiot, M. Randour, and J.-F. Raskin, “Meet your ex-
pectations with guarantees: Beyond worst-case synthesis in quantitative
games,” Information and Computation, 2016.

[27] R. Dimitrova, J. Fu, and U. Topcu, “Robust optimal policies for markov
decision processes with safety-threshold constraints,” in Decision and
Control (CDC), IEEE Conference on. IEEE, 2016.

[28] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in International
Conference on Hybrid Systems: Computation and Control, 2013.

[29] R. Ehlers, S. Moarref, and U. Topcu, “Risk-averse ω-regular markov
decision process control,” in Decision and Control (CDC), Conference
on. IEEE, 2016.

[30] M. Lahijanian and M. Kwiatkowska, “Specification revision for markov
decision processes with optimal trade-off,” in Decision and Control
(CDC), IEEE Conference on. IEEE, 2016, pp. 7411–7418.

[31] J. Klein, “ltl2dstar-LTL to deterministic streett and rabin automata,”
http://www.ltl2dstar.de, 2007.

[32] MDP TG, https://github.com/MengGuo/P_MDP_TG.
[33] K. Chatterjee, V. Forejt, A. Kucera et al., “Two views on multiple mean-

payoff objectives in markov decision processes,” in Logic in Computer
Science (LICS), IEEE Symposium on. IEEE, 2011, pp. 33–42.

[34] T. Brázdil, K. Chatterjee, V. Forejt, and A. Kučera, “Multigain: A con-
troller synthesis tool for MDPs with multiple mean-payoff objectives,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 181–187.

[35] F. Trevizan, S. Thiébaux, P. Santana, and B. Williams, “Heuristic
search in dual space for constrained stochastic shortest path problems,”
Association for the Advancement of Artificial Intelligence, 2016.

[36] Gurobi, https://www.gurobi.com/.
[37] G. Dantzig, Linear programming and extensions. Princeton university

press, 2016.
[38] Simulation Videos, https://vimeo.com/169438447,

169438832, 174351505, and 175143095.
[39] Py iRobot OptiTrack, https://github.com/MengGuo/Py_

iRobot_OptiTrack.
[40] Experiment Videos, https://vimeo.com/180983006,

180985419, 180987471, and 222038744.
[41] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable

robot simulation framework,” in Intelligent Robots and Systems (IROS),
International Conference on. IEEE, 2013, pp. 1321–1326.

Meng Guo (S’14-) received his M.Sc. degree in
System, Control and Robotics in 2011 and Ph.D.
degree in Electrical Engineering in 2016, both from
KTH Royal Institute of Technology, Sweden. Cur-
rently he is a postdoc associate at the Department
of Mechanical Engineering and Materials Science,
Duke University, USA. His main research interest
includes distributed motion and task planning of
multi-agent systems and formal control synthesis.

Michael M. Zavlanos (S05M09) received the
Diploma in mechanical engineering from the Na-
tional Technical University of Athens (NTUA),
Athens, Greece, in 2002, and the M.S.E. and Ph.D.
degrees in electrical and systems engineering from
the University of Pennsylvania, Philadelphia, PA, in
2005 and 2008, respectively.

He is currently an Assistant Professor in the De-
partment of Mechanical Engineering and Materials
Science at Duke University, Durham, NC. He also
holds a secondary appointment in the Department

of Electrical and Computer Engineering and the Department of Computer
Science. Prior to joining Duke University, Dr. Zavlanos was an Assistant
Professor in the Department of Mechanical Engineering at Stevens Institute of
Technology, Hoboken, NJ, and a Postdoctoral Researcher in the GRASP Lab,
University of Pennsylvania, Philadelphia, PA. His research interests include
a wide range of topics in the emerging discipline of networked systems,
with applications in robotic, sensor, and communication networks. He is
particularly interested in hybrid solution techniques, on the interface of control
theory, distributed optimization, estimation, and networking.

Dr. Zavlanos is a recipient of various awards including the 2014 Naval
Research Young Investigator Program (YIP) Award and the 2011 National
Science Foundation Faculty Early Career Development (CAREER) Award.

http://www.ltl2dstar.de
https://github.com/MengGuo/P_MDP_TG
https://www.gurobi.com/
https://vimeo.com/169438447
https://github.com/MengGuo/Py_iRobot_OptiTrack
https://github.com/MengGuo/Py_iRobot_OptiTrack
https://vimeo.com/180983006

	Introduction
	Preliminaries
	Transient MDP
	End Components
	LTL and DRA

	Problem Formulation
	Mathematical Model

	Solution
	Product Automaton and AMECs
	Plan Prefix and Suffix Synthesis
	Plan Prefix
	Plan Suffix with AMECs
	Plan Synthesis when AECs do Not Exist

	The Complete Policy
	Combining the Plan Prefix and Suffix
	Mapping to
	Policy Execution

	Simulation Results
	Model Description
	Ordered Reachability
	Surveillance
	Ordered Supply-delivery
	Surveillance with Clustered Obstacles
	Comparison with PRISM

	Experimental Study
	Model Description
	Experimental Results
	Sequential Visiting Task
	Surveillance Task

	Conclusion and Future Work
	References
	Biographies
	Meng Guo
	Michael M. Zavlanos

