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Abstract— Coordinated motion of multiple agents raises fun-
damental and novel problems in control theory and robotics.
In particular, in applications such as consensus seeking or
flocking by a group of mobile agents, a great new challenge
is the development of robust distributed motion algorithms
that can always achieve the desired coordination. In this paper,
we address this challenge by embedding the requirement for
connectivity of the underlying communication network in the
controller specifications. We employ double integrator models
for the agents and design nearest neighbor control laws, based
on potential fields, that serve a twofold objective. First, they
contribute to velocity alignment in the system and second,
they regulate switching among different network topologies
so that the connectivity requirement is always met. Collision
avoidance among neighboring agents is also ensured and under
the assumption that the initial network is connected, the overall
system is shown to asymptotically flock for all initial conditions.
In particular, it is shown that flocking is achieved even in sparse
communication networks where connectivity is more prone
to failure. We conclude by illustrating a class of interesting
problems that can be achieved while preserving connectivity.

I. INTRODUCTION

Over the past few years, the problem of coordinated mo-
tion and cooperative control of multiple autonomous agents
has received a considerable amount of attention. From ecol-
ogy and evolutionary biology to social sciences, and from
systems and control theory to complexity theory, statistical
physics, and computer graphics, efforts have been made
towards a better understanding of how a group of moving
objects such as flocks of birds, schools of fish, crowds
of people can perform collective tasks without centralized
coordination.

In ecology and theoretical biology, such problems have
been studied in the context of animal aggregation and social
cohesion [1] and much research has focused in mimicking
the observed social aggregation phenomena using computer
simulation [2]. On the other hand, flocking and schooling
behavior was recently addressed in the context of self or-
ganization of systems of self-propelled particles [3] in the
fields of statistical physics and complexity theory.

In control theory and robotics, flocking and schooling
behavior naturally arises in problems involving cooperative
control of autonomous robots, unmanned vehicles, and multi-
agent systems. A nonexhaustive list of references include
[4] − [26]. A frequently used model for flocking and
coordination is proposed in [3], where the agents are assumed
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to have a common and constant speed and updating of
their headings is based on a simple averaging rule involv-
ing nearest neighbors only. The model is in discrete time
and involves discontinuous switches due to changes in the
neighborhood topology resulting from the agents’ motion.
Stability of this model was studied in [24], where it was
shown that for any sequence of jointly connected nearest
neighbor graphs the headings of all agents converge to a
common value. Extensions of this model to vision-based
scenarios were also studied in [25]. More recently, flocking
in multi-agent systems has also been studied for dynamic
point-mass models [26]. Inspired by [2] the authors in [26]
propose distributed control laws that guarantee alignment,
separation and cohesion of the group, capturing hence, the
essence of the model proposed in [2].

To the best of our knowledge, consensus or flocking results
so far, critically rely on the assumption that the underlying
communication network is either connected for all time
[23], [26] or is jointly connected over infinite sequences
of bounded time intervals [24]. However, one can easily
imagine scenarios where the topology of the communication
graph is sparse and hence, losing even a few links can
destroy connectivity. In the spirit of robust algorithms for
multi-agent flocking, in this paper, we propose a distributed
control framework that simultaneously addresses the desired
velocity alignment as well as the connectivity requirement
of the underlying network, necessary for alignment. As in
[26], we employ double integrator models for the agents and
design distributed control laws, based on potential fields,
that achieve velocity alignment and ensure that switching
occurs among connected network topologies, by maintaining
existing links in the network. The network topology is
described by proximity graphs, slightly modified to include
a hysteresis in link additions. It is due to this novel idea that
regulating the network topology becomes possible. Under the
assumption that the initial network is connected, the overall
system is shown to asymptotically flock for all initial condi-
tions, while collision avoidance can also be guaranteed. Our
approach is finally illustrated through a class of interesting
problems that can be achieved while preserving connectivity.

The rest of this paper is organized as follows. In Section
II we define the multi-agent flocking problem, as well as
necessary tools from graph theory. In Section III we propose
the distributed control laws and show that by means of reg-
ulating switching among different network topologies, they
guarantee both collision avoidance and velocity alignment
for all initial conditions. Our approach is finally illustrated
in Section IV, where comparisons with other approaches in
the literature demonstrate its robust nature.



II. PROBLEM FORMULATION

Consider n mobile agents in Rm and let the dynamics of
agent i be described by a double integrator,

ẋi(t) = vi(t)
v̇i(t) = ui(t)

(1)

where xi(t), vi(t) ∈ Rm denote the position and velocity
vectors of agent i at time t, respectively, and ui(t) ∈ Rm is
a control vector to be determined. The goal of this paper is
to determine control inputs ui(t) ∈ Rm for all agents i so
that the group flocks in the following sense.

Definition 2.1 (Flocking): A group of mobile agents is
said to (asymptotically) flock, when all agents attain the same
velocity vector, distances between the agents are stabilized
and no collisions among them occur.

Stability analysis of the group of agents relies on several
results from algebraic graph theory [27]. In particular, in
view of the multi-agent dynamics described in system (1),
we can define a dynamic graph G(t) as follows.

Definition 2.2 (Dynamic Graphs): We call G(t) =
(V, E(t)) a dynamic graph consisting of a set of vertices
V = {1, . . . , n} indexed by the set of agents and a time
varying set of links E(t) = {(i, j) | i, j ∈ V} such that, for
any 0 < r < R,
• if 0 < ‖xi(t)− xj(t)‖2 < r then, (i, j) ∈ E(t),
• if R ≤ ‖xi(t)− xj(t)‖2 then, (i, j) 6∈ E(t).
Dynamic graphs G(t) such that (i, j) ∈ E(t) if and only

if (j, i) ∈ E(t) are called undirected and consist the main
focus of this paper. Moreover, any vertices i and j of an
undirected graph G(t) that are joined by a link (i, j) ∈ E(t),
are called adjacent or neighbors at time t and are denoted by
i ∼ j. Clearly, Definition 2.2 specifies the switching process
among graphs (Figure 1), while the hysteresis introduced
in creation of new links consists the key idea that enables
our approach (see Proposition 3.1). Note also that collision
avoidance between adjacent agents i and j in G(t) is implied
due to the requirement that 0 < ‖xi(t)− xj(t)‖2.1

A topological invariant of graphs that is of particular
interest for the purposes of this paper is graph connectivity.

Definition 2.3 (Graph Connectivity): We say that a dy-
namic graph G(t) is connected at time t if there exists a
path, i.e., a sequence of distinct vertices such that consecutive
vertices are adjacent, between any two vertices in G(t).

Hence, the problem addressed in this paper can be for-
mally stated as follows.

Problem 1 (Flocking): Given the set of connected graphs
Cn on n vertices, determine distributed control laws ui(t)
for all agents i so that if G(t0) ∈ Cn, then G(t) ∈ Cn for all
time t ≥ t0, all agent velocities asymptotically become the
same and collisions among them are always avoided.

Note that unlike previous approaches to the problem, that
critically rely on the assumption that the network G(t) is
connected for all time [26] or infinitely often [24], here
we only require that G(t) is initially connected. Then, our

1Dynamic graphs G(t) as in Definition 2.1, are sometimes also called
proximity graphs.
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Fig. 1. Link (solid lines) dynamics according to Definition 2.1.

approach to Problem 1 critically relies in rendering the set
Cn an invariant of motion for system (1). We achieve this
goal by choosing an equivalent formulation of the problem
using the algebraic representation of the dynamic graph G(t).
In particular, the structure of any dynamic graph G(t) =
(V, E(t)) can be equivalently represented by a dynamic
Laplacian matrix,

L(t) = ∆(t)−A(t) (2)

where A(t) = (aij(t)) corresponds to the Adjacency ma-
trix of the graph G(t), which is such that aij(t) = 1 if
i ∼ j ∈ E(t) and aij(t) = 0 otherwise and ∆(t) =
diag

( ∑n
j=1 aij(t)

)
denotes the Valency matrix.2 Note that

for undirected graphs, the Adjacency matrix is a symmetric
matrix and hence, so is the Laplacian matrix. The spectral
properties of the Laplacian matrix are closely related to graph
connectivity. In particular, we have the following lemma.

Lemma 2.4 ([27]): Let λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤
λn(L(t)) be the ordered eigenvalues of the Laplacian matrix
L(t). Then, λ1(L(t)) = 0 for all t, with corresponding
eigenvector 1, i.e., the vector of all entries equal to 1.
Moreover, λ2(L(t)) > 0 if and only if G(t) is connected.

III. MULTI-AGENT COORDINATION

Given any dynamic graph G(t) = (V, E(t)), let Ni(t) =
{j | (i, j) ∈ E(t)} denote the neighbors of agent i at time t
and for all i define the set of control laws,

ui = −
∑

j∈Ni(t)

(vi − vj)−
∑

j∈Ni(t)

∇xiVij (3)

where the first term in the right hand side of (3) corresponds
to the desired velocity alignment, while the second term
corresponds to a vector in the direction of the negated
gradient of an artificial potential function,

Vij(xij) =
1

‖xij‖22
+

1
R2 − ‖xij‖22

, ‖xij‖2 ∈ (0, R)

with xij = xi − xj , which allows both collision avoidance
and maintaining links in the network (Figure 2).3 Note
that Vij grows unbounded when ‖xij‖2 → R−, hence the
significance of the hysteresis in our model.

2Since we do not allow self-loops, we define aii(t) = 0 for all i =
1, 2, . . . , n.

3For distributed coordination protocols that also allow link deletions we
refer the reader to [22].
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Fig. 2. Plot of the potential Vij(xij) for R = 1.

As discussed in Section II, the topology of the network
may change over time, hence, the system dynamics (1) under
control inputs (3) result in a switching dynamical system.
Let tp for p = 1, 2, . . . denote the switching times when
the topology of G(t) changes, and define a switching signal
G(t) : [t0,∞) → Cn associated with connected graphs,
according to Problem 1.4 We, then, have the following result.

Proposition 3.1: Assume the closed loop system (1)-(3).
Then, for any pair of switching times tp < tq the switching
signal G(t) satisfies E(tp) ⊆ E(tq).

Proof: Let t1, t2, . . . denote the sequence of switching
times and let v = [vT

1 . . . vT
n ]T and u = [uT

1 . . . uT
n ]T

denote the stack vectors of all agent velocity vectors vi ∈ Rm

and control signals ui ∈ Rm, respectively, and consider the
dynamical system,

ẋ = BKv

v̇ = u

where BK is the incidence matrix of the complete graph.
Define, further, the function VG : DG × Rmn

+ → R+ such
that,5

VG =
1
2

(
‖v‖22 +

n∑

i=1

Vi

)

where Vi =
∑

j∈Ni
Vij and DG = {x ∈ Rmn(n−1)|‖xij‖2 ∈

(0, R) ∀ (i, j) ∈ E}. For any c > 0, let ΩG = {(x,v) ∈
DG ×Rmn

+ |VG ≤ c} denote the level sets of VG and observe
that,

V̇G =
1
2

n∑

i=1

V̇i −
n∑

i=1

vT
i

( ∑

j∈Ni

(vi − vj) +∇xiVi

)

Moreover,

1
2

n∑

i=1

V̇i =
1
2

n∑

i=1

∑

j∈Ni

ẋT
ij∇xij Vij

=
1
2

n∑

i=1

∑

j∈Ni

(
ẋT

i ∇xij Vij − ẋT
j ∇xij Vij

)

=
1
2

n∑

i=1

∑

j∈Ni

(
ẋT

i ∇xiVij + ẋT
j ∇xj Vij

)

=
n∑

i=1

∑

j∈Ni

ẋT
i ∇xiVij =

n∑

i=1

ẋT
i ∇xiVi

4Note that G(t) is also a map from the real time-line to the set of graphs.
5We denote by R+ the set [0,∞).

by symmetry of the functions Vij . Hence,

V̇G =
n∑

i=1

vT
i ∇xi

Vi −
n∑

i=1

vT
i

( ∑

j∈Ni

(vi − vj) +∇xi
Vi

)

= −
n∑

i=1

vT
i

∑

j∈Ni

(vi − vj) = −vT (LG ⊗ Im)v ≤ 0

where ⊗ denotes the Kronecker product between matrices.
Clearly, V̇G is always nonpositive, by positive semidefinite-
ness of the Laplacian matrix LG . Hence, for any signal G,
the level sets ΩG are positively invariant, implying that for
any (i, j) ∈ E , Vij remains bounded. On the other hand, if
for some (i, j) ∈ E , ‖xij‖ → R, then Vij(xij) →∞. Thus,
by continuity of VG in DG , it follows that ‖xij‖ < R, for
all (i, j) ∈ E and t ∈ [tp, tp+1). In other words, all links
in G are maintained between switching times, which implies
that E(tp) ⊆ E(tp+1). Applying recursively this argument
completes the proof. A similar argument for the case where
‖xij‖2 → 0 can be used to establish collision avoidance.
Note finally, that the condition 0 < r < R in Definition
2.2 ensures that if a link (i, j) 6∈ E is added to E , then the
associated potential Vij is bounded and hence, so is the new
potential VG . This observation allows us to define level sets
of the potentials VG .

Proposition 3.1 clearly implies that if G(t0) ∈ Cn, then the
switching signal will satisfy G(t) ∈ Cn for all time t ≥ t0.
In particular, we have the following corollary.

Corollary 3.2: Under control law (3), the total number of
switching times of system (1) is finite.

Proof: Just note that, by Proposition 3.1, the size of
the set of links |E(t)| forms an increasing sequence and,

sup
t≥t0

{|E(t)| − |E(t0)|} =
n(n− 1)

2
− (n− 1)

where n − 1 corresponds to the number of links in G(t0)
if it is minimally connected, i.e., if it is a tree, and n(n−1)

2
corresponds to the number of links in a complete graph.

Hence, using Proposition 3.1 and Corollary 3.2 we can
show our main result.

Theorem 3.3: For the closed loop system (1)-(3) assume
that G(t0) is connected. Then, all agent velocities become
asymptotically the same and collisions among agents are
avoided.

Proof: By Corollary 3.2, the number of switching times
of the closed loop system is finite and so the signal G(t)
eventually becomes constant, i.e., G(t) → G. It follows
by Proposition 3.1 that if G(t0) is connected, then G(t) is
connected for all time t ≥ t0 and so eventually G(t) →
G ∈ Cn. This observation implies that we can essentially
study convergence of the system once the switching signal
has converged and the network topology is fixed. As in
Proposition 3.1, for any signal G the potential VG is positive
definite and,

V̇G = −vT (LG ⊗ Im)v = −
m∑

j=1

vT
yj

LGvyj ≤ 0
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Fig. 3. Flocking of n = 20 agents.

since vT
yj

LGvyj ≥ 0 for all j = 1, . . . , m, where vyj ∈ Rn

is the stack vector of the components of the agents’ velocities
along the yj direction. Furthermore, the level sets of ΩG are
closed by continuity of VG in DG × Rmn

+ . Note now that,

ΩG ⊆ {v | ‖v‖22 ≤ c} ∩ ( ∩(i,j)∈E {xij | Vij ≤ c})

= {v | ‖v‖22 ≤ c} ∩ ( ∩(i,j)∈E V −1
ij ([0, c])

)
, Ω

The velocity set {v | ‖v‖22 ≤ c} is closed and bounded
and hence, compact. Moreover, for all (i, j) ∈ E the sets
V −1

ij ([0, c]) are closed by continuity of Vij in the interval
(0, R). They are also bounded; to see this, suppose there exist
indices i and j for which V −1

ij ([0, c]) is unbounded. Then, for
any choice of N ∈ (0, R), there exists an xij ∈ V −1

ij ([0, c])
such that ‖xij‖2 > N . Allowing N → R, and given that
lim‖xij‖2→R Vij = ∞, it follows that for any M > 0, there
is a N > 0 such that Vij > M . If we pick M > c we reach a
contradiction, since by definition xij ∈ V −1

ij ([0, c]) = {xij |
Vij(xij) ≤ c}. Thus, all sets V −1

ij ([0, c]) are bounded and
hence, compact. Therefore, Ω is compact as an intersection
of finite compact sets. It follows that ΩG is also compact, as
a closed subset of a compact set.

By LaSalle’s invariance principle, every solution starting
in ΩG asymptotically converges to the largest invariant set
in {(x,v) ∈ DG × Rmn

+ | V̇G = 0} = {v ∈ Rmn
+ | LGvyj =

0, ∀j = 1, . . . ,m}. Since G is connected, the largest
invariant set in {(x,v) ∈ DG × Rmn

+ | V̇G = 0} is the set
of velocity vectors v ∈ Rmn such that vyj ∈ span{1} for
all j = 1, . . . ,m. In other words, the velocities of all agents
in the switched system (1) asymptotically become the same.
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Fig. 4. Plot of the potential Vij(xij) in [26] for rmin = .5 and R = 1.

Collision avoidance, on the other hand, is due to Proposition
3.1.

IV. SIMULATION RESULTS

In this section we illustrate the proposed algorithm in
various flocking scenarios where connectivity of the overall
network can not be trivially maintained and show that the
desired flocking motion of the agents is always achieved.
Such scenarios may result from minimally connected ini-
tial configurations of the agents. In particular, we consider
n = 20 agents in R2 initialized on a line with distances
between adjacent agents equal to .25, initial velocities chosen
randomly in the unit square, link range R = .4 and hysteresis
r = .3 (Figure 3). Agents are denoted with dots, while links
between the agents are indicated by solid lines. Moreover, the
corresponding graphs do not explicitly depend on inter-agent
distances, but correspond to the actual network topology
according to Definition 2.2. Solid curves attached to every
agent indicate the recently traveled paths, while arrows
correspond to the agents’ velocities.6 Note that our approach
guarantees connectivity of the network for all time and hence,
asymptotic flocking of the group is achieved.
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Fig. 5. 50 agents on the perimeter of a circle (Initial Configuration).

Our next scenario involves n = 50 agents in R2, sym-
metrically distributed on the perimeter of a circle of radius
d = 1.5 having initial velocities chosen randomly in the unit
square (Figure 5). The adjacency matrix of the corresponding

6Arrows are appropriately scaled for better illustration.
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Fig. 6. Failure to flock without connectivity control.

network is,

A =




0 1 1 0 0 0 . . .
1 0 1 1 0 0 . . .
1 1 0 1 1 0 . . .
0 1 1 0 1 1 . . .
0 0 1 1 0 1 . . .
0 0 0 1 1 0 . . .
...

...
...

...
...

...
. . .




To best illustrate our approach, we compared it with
previously suggested solutions that do not involve connec-
tivity control of the network. In particular, we employed the

approach followed in [26], where the main difference with
respect to our framework lies in the choice of the potentials
Vij , which in [26] are defined as (Figure 4),

Vij(xij) =
{ −α1‖xij‖+ log(‖xij‖) + α2

‖xij‖ , ‖xij‖ < R

−α1R + log(R) + α2
R , ‖xij‖ ≥ R

where α1 = 1
rmin+R , α2 = Rrmin

rmin+R and 0 < rmin < R
is associated to the minimum value of Vij . Figures 6 and 7
show the evolution of the system for the approach in [26]
and our approach, respectively.

Note that in the absence of connectivity control the group
of agents gets disconnected and fails to flock (Figures 6).
On the other hand, our approach, guarantees connectivity of
the network for all time and hence, asymptotic flocking of
the group is achieved (Figures 7). Furthermore, no links are
deleted from the network, while the final network topology
contains 98 more links than the initial one, where |E(t0)| =
200. The link range and hysteresis used were R = .4 and
r = .3, respectively. We finally mention scalability of our
approach due to the large numbers of agents it can handle.

V. CONCLUSIONS

In this paper, we considered a distributed control frame-
work to the multi-agent flocking problem that simultaneously
addresses the desired velocity alignment as well as the con-
nectivity requirement of the underlying network, necessary
for alignment. The agents were modeled by dynamic point
masses and the proposed control strategy involved potential
fields able to achieve velocity alignment and ensure that
switching in the model occurs among connected network
topologies. The network topology was described by proxim-
ity graphs, modified to include a hysteresis in link additions,
which enabled regulating the network topology. Under the
assumption that the initial network is connected, the overall
system was shown to asymptotically flock for all initial
conditions, while collision avoidance was also guaranteed.
Our approach was illustrated in various flocking scenarios
and comparisons with other approaches from the literature
demonstrated its robust nature. We believe that this work
points to a new direction in distributed coordination of
multi-agent systems, where robustness of solutions can be
achieved through multi-objective control. Further research
involves extending the proposed framework to more general
switching schemes among connected network topologies that
also account for link deletions.
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