Distributed Control of the Laplacian Spectral Moments of a Network

Victor M. Preciado, Michael M. Zavlanos, Ali Jadbabaie, and George J. Pappas

Abstract—1It is well-known that the eigenvalue spectrum of
the Laplacian matrix of a network contains valuable infor-
mation about the network structure and the behavior of many
dynamical processes run on it. In this paper, we propose a fully
decentralized algorithm that iteratively modifies the structure
of a network of agents in order to control the moments of the
Laplacian eigenvalue spectrum. Although the individual agents
have knowledge of their local network structure only (i.e.,
myopic information), they are collectively able to aggregate this
local information and decide on what links are most beneficial
to be added or removed at each time step. Our approach relies
on gossip algorithms to distributively compute the spectral
moments of the Laplacian matrix, as well as ensure network
connectivity in the presence of link deletions. We illustrate our
approach in nontrivial computer simulations and show that a
good final approximation of the spectral moments of the target
Laplacian matrix is achieved for many cases of interest.

I. INTRODUCTION

A wide variety of distributed systems composed by au-
tonomous agents are able to display a remarkable level
of self-organization despite the absence of a centralized
coordinator [1, 2]. For example, the structure of many
“self-engineered” networks, such as social and economic
networks, emerges from local interactions between agents
aiming to optimize their local utilities [3]. Motivated by
the implications of a network’s Laplacian spectrum on
its structure (i.e., number of connected components) and
behavior of dynamical processes implemented on it (i.e.,
speed of convergence of distributed consensus algorithms),
we propose a distributed model of graph evolution in which
autonomous agents can modify their local neighborhood in
order to control a set of moments of the network Laplacian
spectrum.

The eigenvalue spectra of a network provide valuable
information regarding the behavior of many dynamical pro-
cesses running within the network [4]. For example, the
eigenvalue spectrum of the Laplacian matrix of a graph
affects the mixing speed of Markov chains [5], or the stability
of synchronization of a network of nonlinear oscillators [6,
7]. Similarly, the second smallest eigenvalue of the Laplacian
matrix (also called spectral gap) is broadly considered a
critical parameter that influences the stability and robustness
properties of dynamical systems that are implemented over
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information networks [8, 9]. Optimization of the spectral
gap has been studied by several authors both in a central-
ized [10]-[12] and decentralized context [13]. In contrast,
our approach focuses on controlling the moments of the
Laplacian eigenvalue spectrum. In this way, we can influence
the behavior of certain dynamical processes run within the
network. As we show, the benefit of controlling the spectral
moments, and especially the lower order ones, lies in lower
computational cost and elegant distributed implementation.

A major challenge in our approach is to efficiently control
the spectral moments of a network in a fully distributed fash-
ion while maintaining network connectivity in the presence
of link deletions. Our work is related to [14], where a fully
distributed algorithm is proposed to compute the full set of
eigenvalues and eigenvectors of a matrix representing the
network topology. However, our approach is computationally
cheaper since computation of the spectral moments does not
require a complete eigenvalue decomposition, but can be
performed distributively by averaging local network infor-
mation, such as node degrees. On the other hand, control of
the network structure to the desired set of spectral moments
is based on greedy actions (link additions and deletions) that
are the result of distributed agreement protocols between
the agents. We show that our distributed topology control
algorithm is stable and converges to a network with spectral
moments “close” to the desired. The performance of our
algorithm is illustrated in computer simulations.

The rest of this paper is organized as follows. In Section II,
we formulate the problem under consideration and review
some terminology. In Section III, we derive closed-form
expressions for the first four moments of the Laplacian
spectrum in terms of graph properties that can be measured
locally. Based on these expressions, we introduce a dis-
tributed algorithm to compute these moments. In Section IV,
we propose an efficient distributed algorithm to control of the
spectral moments of a network. Finally, in Section V, we
illustrate our approach with several computer simulations.

II. PRELIMINARIES & PROBLEM DEFINITION

Let G = (V,€) denote a graph on n nodes, where
V = {v1,...,v,} denotes the set of nodes and £ C V x V
is the set of edges. If (v;,v;) € £ whenever (v;,v;) € € we
say that G is undirected and call nodes v; and v; adjacent (or
neighbors), which we denote by v; ~ v;. The set of all nodes
adjacent to node v constitutes the neighborhood of node v,
defined by NV = {w € V : (v,w) € £}, and the number
of those neighbors is called the degree of node v, denoted
by degv. We now define two quantities related with the
sequence of degrees in the graph, namely, the averaged power



sums of the degrees Wy, = 2> | (deg )", and the em-
pirical degree correlation Cg = >, o, >, crro degv degu.
In this paper, we consider finite simple graphs, where nodes
are connected by at most one edge with no self-loops.

We define a walk from v to vy, of length k to be an ordered
sequence of nodes (vg,v1,...,v%) such that v; ~ v,y for
1 =0,1,....,k — 1. We say that a graph G is connected if
there exists a walk between every pair of nodes. If vy = vy,
then the walk is closed. A closed walk with no repeated
nodes (with the exception of the first and last nodes) is
called a cycle. Triangles and quadrangles are cycles of
length three and four, respectively. Let d (v, w) denote the
distance between two nodes v and w, i.e., the minimum
length of a walk from v to w. We say that v and w are
k-th order neighbors if d(v,w) = k and define the k-th
order neighborhood of a node v as the set of nodes within
a distance k from v, ie, N ={w eV : d(v,w) <k}. A
k-th order neighborhood, induces a subgraph G C G with
node-set AV’ and edge-set £ defined as the set of edges in
& that connect two nodes in N'. We say that a graphical
property Pg is locally measurable within a radius k around
a node v if Pg is exclusively a function of the neighborhood
subgraph, i.e., P; = f(G}). For example, both the degree
and the number of triangles touching a node are locally
measurable within a radius 1. Same is true for the number
of quadrangles touching a node within a radius 2.

Graphs can be algebraically represented via the adjacency
and Laplacian matrices. The adjacency matrix of an undi-
rected graph G, denoted by A = [a;;], is an n X n symmetric
matrix defined entry-wise as a;; = 1 if nodes v; and v;
are adjacent and a;; = 0 otherwise.! The powers of the
adjacency matrix is related to walks in a graph. In particular
we have the following results [15]:

Lemma 2.1: The number of closed walks of length o
joining node v; to itself is given by the ¢-th diagonal entry
of the matrix A®.

Corollary 2.2: Let G be a simple graph. Denote by T; and
Q; the number of triangles and quadrangles touching node v;,
respectively. Then (A);; = 0, (A2);; = degv;, (43);; = 2T;
and (A%), =2Q; + (degv;)” + X ¢, (degv; — 1).

Arranging the node degrees on a diagonal matrix yields
the degree matrix D = diag (degv;). Then, the Laplacian
matrix L of a graph G can be defined by L = D — A. Let
A1 < A < o < A, be the eigenvalues of L, where 1
is the vector of all ones. One can prove that L is positive
semidefinite and A\; = 0. Furthermore, G is connected if and
only if Ay > 0, or equivalently, if ker L = span{1} [15]. As
a result, we have the following well-known result [16]:

Theorem 2.3: Consider a fixed undirected graph G on n
nodes and let §;(t) € R denote the state variable of node
i. Let O(t) = [0;(t)] € R™ be the vector of all states and
assume 0(t) = —LA(t). Then the network G is connected if
and only if,

lim 0(t) =

t—o00

3=

> 6;(0)1 € span{1}. (1)
1=1

IFor simple graphs with no self-loops, a;; = 0 for all 4.

for all initial conditions 6(0) € R™.

Theorem 2.3 says that the graph G is connected if and only
if all nodes eventually reach a consensus on their state values
6;(t), for all initial conditions. Therefore, connectivity of a
network G can be verified almost surely by comparing the
asymptotic state values (1) of all agents, for any random
initialization. Note that a similar result can be obtained
by application of a finite-time maximum (or minimum)
consensus [17].

A. Problem Definition

Consider a discrete-time sequence of graphs {G(s)}s>1
where s € {1,2,...} is the discrete time index. We denote
by {Xi(s)}s>1 the set of Laplacian eigenvalues of G(s). We
define the k-th spectral moment of the Laplacian matrix
of G(s) at time s as mg(s) = 13"  A¥(s).The k-th
centralized spectral moment of the Laplacian are my(s) =
Zi:o (i) (1) my(s)m5 =" (s).The first four centralized
spectral moments of the Laplacian corresponds to the mean,
variance, skewness and kurtosis of the eigenvalue spectrum
and they play a central role in this paper. Define further the
error function:

4 2
CME (G(s)) = 3 [ () = (i) ¥ @
k=0
where mj, denotes a given set of desired centralized mo-
ments. Since the k-th moment is the k-th power-sum of
the Laplacian eigenvalues, we include the exponents 1/k in
the above error function with the purpose of assigning the
same dimension to the summands in (2). Then, the problem
addressed in this paper is:

Problem 1: Given an initially connected graph G(0), de-
sign a distributed algorithm that iteratively adds or deletes
links from G(s), so that the connectivity of G(s) is main-
tained for all time s and the error function CME(G(s)) is
locally minimized for large enough s.

In what follows, we first propose a distributed algorithm to
efficiently compute and update CME(G(s)) without any ex-
plicit eigendecomposition (Section III). Then, in Section IV,
we propose a greedy algorithm where the most beneficial
edge addition/deletion is determined based on a distributed
agreement over all possible actions that satisfy network
connectivity (Theorem 2.3). In this framework, the time
variable s increases by one whenever an action is taken
(i.e., an addition or deletion of a link). For simplicity, we
assume that actions are taken one at a time, although this
assumption can be relaxed to accommodate more complex
action schemes.

III. DISTRIBUTED COMPUTATION OF SPECTRAL
MOMENTS

In what follows, we assume that the agents in the network
have very limited knowledge of the network topology. In
particular, we assume that every agent v only knows the
topology of the second-order neighborhood subgraph around
it, G3. (This is the case, for example, for many online social
networks, where each individual can retrieve a list of his



friends’ friends.) Then, computing the first four Laplacian
spectral moments relies on counting the presence of certain
subgraphs, such a triangles and quadrangles, in every agent’s
neighborhood and averaging these quantities via distributed
average consensus. In particular, since the matrix trace opera-
tor is conserved under diagonalization (in general, under any
similarity transformation) the first three spectral moments of
the Laplacian matrix of a graph can be written as

itrL’f:lzk: K (=1)P tr (APDF=P), (3)
N n ’

my, (L) =
p=0 p

for £ < 3, where we have used the fact that the trace is
preserved under cyclic permutations (i.e., tr ADD=tr DAD=
tr DDA). We cannot use Newton’s binomial expansion for
the forth moment; nevertheless, we may still obtain the
following closed form solution:

1 1
my (L) = Etr (D—A)* = - [eD* — 4rD*A

+4trD*A% + 20DADA — 4rDA® + rA*] . (4)
Expanding the traces that appear in (3) and (4) we
get tr(D9AP) = Y7 | (degv;)? (AP),and tr(DADA) =
>y >y (diaiz) (dja;;) = 2Cg, which substituted back
in equations (3) and (4) give the following expression for
k<3

D" (d)* (A ()

3

ey (e
i=1 r=0
For k = 4, we can also simplify the Laplacian spectral
moment, which now becomes
RS 4 3 2
my (L) = o ;[dz —4d; (A);; + 4d; (A),
+2d; Y dj —4d; (A7) +
JEN;

(A ®

Substituting the expressions for (AT) from Lemma 2.1
and Corollary 2.2 in equations (5) and (6) we obtain the first
four spectral moments of the Laplacian matrix Lg as follows

mi (L) = Wl, (73-)
mo (L) = W2 —+ Wl, (7b)
1 n
L) = —=N"or, 7

ms (L) = W5 + 3Wy TL; (7¢)
1 n

ma (L) = Wi+ 4Ws + Wp +2Cg — — > (8Tid; +2Q:) .
=1

(7d)

Note that the expressions for the spectral moments in
equations (7) are all averages of locally measurable quan-
tities (within a 2-hop neighborhood), namely, node degrees,
triangles and quadrangles touching the node. Hence, we can
apply consensus and use the result of Theorem 2.3 to obtain
the first four moments in a distributed way.

IV. DISTRIBUTED CONTROL OF SPECTRAL MOMENTS
A. Possible Local Actions

The possible actions (or control variables) we consider
are local link additions and local link deletions. A link
addition is local if it connects a node with another node
within its second-order neighborhood. Let N{(s) and N2 (s)
denote the sets of neighbors and two-hop neighbors of
node ¢ at time s > 0, respectively. Since any of the
two nodes adjacent to a link can take an action to delete
that link, we need to decide which of the two nodes
has the authority to delete the link. To avoid ambiguities,
we define the set of edges that node ¢ has authority to
remove as: Ei(s) £ {(i,j) € E(s) | j € Ni(s), i > j}.
Similarly, to disambiguate between nodes adding a (still
non-existing) link between them, we define the set of
potential edges that node i can create as: Ei(s) =
{(i,5) € E(s) | j € N4(s)\Ni(s), i > j}*. Note that link
deletions may violate network connectivity. In this case,
those link deletions should be excluded from the set of
allowable actions.

1) Link Deletions: To infer network connectivity we em-
ploy finite-time-maximum consensus which is a distributed
algorithm and converges to equal values on nodes belonging
to the same connected component of a graph (Theorem 2.3).
According to this idea, if deletion of a link violates connec-
tivity, both nodes adjacent to that link will lie in different
connected components and will have different consensus
values. In particular, consider node j that has authority to
remove any of the links in the set £)(s). Each one of these
links needs to be checked with respect to connectivity and
each connectivity verification relies on a scalar consensus up-
date, according to Theorem 2.3. Therefore, checking all links
in &) (s) requires |£](s)| consensus updates.’ We associate
with every link in £](s) a consensus variable, and stacking
all these variables in a vector we obtain the state vector
x;;(s) € RI€(). Running a distributed consensus over the
network, requires participation of all other nodes i # j. This
is possible by defining the state variables x;;(s) € RI€2(*)I,
All vectors x;;(s) are initialized randomly and are updated
by node ¢ according to the following maximum consensus:

Case I: If (i,7) & Ei(s) U EN(s), ie., if nodes i and j are
not neighbors, then
Xij(s) := L {xij(s), xk;(s)} (®)

with the maximum taken elementwise on the vectors,
Case II: If (i, j) € &](s), i.e., if nodes 7 and j are neighbors
and node j has authority over link (4, 5), then

i () gy [xu5 ()] i) }

[xi;(8)],j) =  max {[X

keNT(s)\{7}
)
and
[xi5(s)](1.5) := L {105 () 0,y Ks ()] gy b (10)

2Note that since the indices of all nodes in the network are distinct, this
definition results in a unique assignment of links to nodes.
3We define by | X| the cardinality of the set X.



Algorithm 1 Connectivity verification

Require: x;; € Rl%l forall j €V ;
Require: 7;; =[0...1;...0/7,VjeV;
1: if 3 j € V such that min{7};} = 0 then
Update x;; by (8)—(11);
Tij = maneNL_l {Tij7 Tkj};
else if min{T;;} =1 for all j € V then
Update &€& by (12);
end if

AN A

for [ # i, where [x};(s)](1,;) € R denotes the entry of xj;(s)
corresponding to the link (I, j),

Case III: If (i, 7) € E}(s), i.e., if nodes i and j are neighbors
and node 7 has authority over link (4, j), then

{[Xn‘(sﬂ(i,j)» [in(s)](m)} :
(11)

Once consensus (8)—(11) has converged, node ¢ compares
the entries [x;i(s)]q,;) and [xji(s)]) for all (i,5) €
& (s). Since, violation of connectivity due to deletion of
the link (¢,7) would result in nodes ¢ and j being in dif-
ferent connected components of the network, [x;i(s)](, ;) =
[xji(5)](,j) implies that the reduced network is still con-
nected. Hence, we can define a set

&5 (s) £ {(i.9) € () [xai(9)]i5) = [xji()apy } - (12)

containing the safe links adjacent to node ¢ that if deleted,
connectivity is maintained.

2) Connectivity Verification: The connectivity verification
of link deletions, discussed in Section IV-A.1, is illustrated in
Alg. 1. Convergence of the finite-time consensus (8)—(11) is
captured by a vector of tokens Tj;(s) € {0, 1}, initialized
as Tyj(s) == [0...1;...0]T for all j € V and indicating
that node ¢ has initialized the consensus variables for link
deletions for which node j is responsible. In particular,
when all tokens of all nodes have been collected (line 4,
Alg. 1), then consensus has converged and the set of safe
link deletions £:(s) can be computed (line 5, Alg. 1).

max

Xii\8)|(i,5) =
e kENT (s)\ (4}

B. Most Beneficial Local Action

As discussed in Problem 1, the objective of this work is to
minimize the error function CME(G(s)). For this we propose
a greedy algorithm, which for every time s selects the action
that maximizes the quantity CME(G(s)) —CME(G(s+1)), if
such an action exists, and terminates if no such action exists.
By construction, such an algorithm converges to a network
that locally minimizes CME(G(s)), while in Section V, we
show that it performs well in practice too. In particular, let

Amy ) = i%,
Amg(i’j) = % [1 + (dz + dj + 1)} )
AmEED — % (B 6) (d; + dj) + 3(d2 + d2) + (6 + 2) F 6T;]

denote the increments in the first three moments, where the
notation =+ (¢,7) indicates a link addition (+) or deletion
(—) and the dependence on time s has been dropped for
simplicity. (Similarly, one can obtain a complicated closed-
form expression for Am: "), which we omit due to space
limitations.) Then, agent’s ¢ copy of the k-th spectral moment
mé (s) becomes

mki(i’j)(s) =mj,(s) + Amf(i’j)(s),

and the associated centralized moment fn,f(l’j )(5) can be
computed as in Section II. Then, for all possible actions dis-
cussed in Section IV-A, agent ¢ computes the error function
- +(i,j 1/k k]”
CMEi(m)(s) = Z [(mk (17])(8)> _ (mZ) / :|
k=0
Then, the local most beneficial action to the target centralized
moments, namely, the action that results in the maximum
decrease in the error function CME(-), can be defined by*

vi(s) £ max {argmin (CME.; ) (s) — CMEZ(S))} ,
J
where CME; () denotes agent i’s copy of CME(s), and the
largest decrease in the error associated with action ;(s)
becomes:
CME,(s) = CMEi(i,Vi(S))(S)

if min;(CMEL; jy(s) — CME(s)) < 0 and CME;(s) = D,
otherwise. Note that CME, (s) is nontrivially defined only if
the exists a link adjacent to node ¢ that if added or deleted
decreases the error function CME(-). Otherwise, a large value
D > 0 is assigned to CME;(s) to indicate that this action
is not beneficial to the final objective. We can include all
information of a best local action in the vector

vi(s) £ [i vi(s) CME,(s) M, (5)] | € R

containing the local best action (i,v;(s)), the associated
distance to the desired moments CME;(s), and the vector
of centralized moments M. (; ,,, (5))(s) due to this action. In
the following section we discuss how to compare all local
actions v;(s) for all nodes ¢ € V to obtain the one that
decreases the distance to the desired moments the most.

C. From Local to Global Action

We propose a control scheme where the desired local
actions v;(s) are propagated in the network, along with
vectors of tokens T;(s) € {0,1}", initialized as T;(s) :=
[0...1;...0]T, indicating that node i has transmitted its
desired action. During every iteration of the algorithm, every
node ¢ communicates with its neighbors and updates its
vector of tokens T;(s) (line 3, Alg. 2), as well as its desired
action v;(s) with the action v;(s) corresponding to the node
7 that contains the smallest distance to the target moments

[vi(s)]s, ie.,
j € argminge n i) {[vi(8)]a, [Vie(s)]3}

4The max in the expression bellow indicates that in case of ties in the
min, the highest index node wins.



Algorithm 2 Globally most beneficial action

Require: v; £ [i v; CME; m_(; ,,,)]7;
Require: 7, :=[0...1;...0]7;
1: if min{7;} = 0 then
v; i=v;, with j = max{argmin, ¢ x-: {[vi]s, [Vk]s};
T; .= maxjeNf{ﬂ,Tj};
else if min{7;} =1 and [v;]3 < D then
Update N;, m; and CME; according to (13)—(16);
else if min{7;} =1 and [v;]3 = D then
No beneficial action. Algorithm has converged;
end if

S A R

In case of ties in the distances to the targets [v;(s)]s, i.e., if
argmingc i (5){[Vi(s)ls, [vi(s)]3} contains more than one
nodes, then the node j with the largest label is selected
(line 2, Alg. 2). Note that line 2 of Alg. 2 is essentially a
minimum consensus update on the entries [v;(s)]3 and will
converge to a common outcome for all nodes when they
have all been compared to each other, which is captured by
the condition min’_; Tj;(s) = 1 (lines 4 and 6, Alg. 2).
When the consensus has converged, if there exists a node
whose desired action decreases the distance to the target
moments, i.e., if [v;(s)]s < D (line 4, Alg. 2), then Alg. 2
terminates with a greedy action and node ¢ updates its set of
neighbors N} (s) and vector of centralized moments m;(s)
(line 5, Alg. 2). If the optimal action is a link addition, i.e.,
if [vi(s)]2 & Ni(s), then

Ni(s+1) :=N{(s) U{[vi(s)]a}. (13)
On the other hand, if the optimal action is a link deletion,
ie., if [v;(s)]2 € Ni(s), then

Ni(s +1) := Ni(s)\ {[vi(s)]2} - (14)
In all cases, the centralized moments and error function are
updated by

ﬁli(s + 1) = [VZ’(S)]4:7 (15)
and
respectively, where [v;(s)]ar = [Vi(s)]a ... [vi(s)]7]". Fi-

nally, if all local desired actions increase the distance to the
target moments, i.e., if [v;(s)]s = D (line 6, Alg. 2), then no
action is taken and the algorithm terminates with a network
topology with almost the desired spectral properties. This is
because no action exists that can further decrease the distance
to the target moments.

D. Synchronization

Synchronization of all processes in the absence of a
common clock is necessary for correctness of the proposed
control scheme. Here, we employ the approach proposed in
[18]. Details are omitted due to space limitations.

(@) ®)

Fig. 1. Structures of the two-stars network (a) and the network returned
by our algorithm (b).

1

eigenvalues

Fig. 2. Empirical cumulative distribution functions for the eigenvalues of
the two-stars graph (blue) and the graph returned by our algorithm (red).

V. NUMERICAL SIMULATIONS

Example 1 (Two-stars network): We consider a two-stars
graph on 20 nodes (Fig. 1(a)). We initialize our algorithm
with a random graph on 20 nodes and try to approximate
the first four central moments of the two-stars graph. In
our simulations, we observe that the error function quickly
reaches a neighborhood of zero but does not reach zero
exactly. Instead of obtaining the two-stars graph as a final
result, our algorithm returns the network shown in Fig. 1(b).
Although both graphs are different, the eigenvalue spectra
of the desired two-star network and the network in Fig. 1(b)
are still very similar, as shown in Fig. 2.

Example 2 (Chain vs. ring networks): The objective of
this example is to illustrate how two structurally similar
target graphs, such as a chain and a ring, may affect the
performance of our algorithm. In particular, if we run our
algorithm to control the moments of an initially random
graph towards the moments of a chain graph, we observe
how the error function converges exactly to zero in finite
time. Furthermore, the final result of our algorithm is an
exact reconstruction of the chain graph. Nevertheless, when
transforming the target graph from a chain graph into a ring
graph (by adding a single link), an exact reconstruction is
very difficult. In Fig. 3, we illustrate some graphs returned by
our algorithm for different initial conditions when we control
the set of moments toward the moments of a ring network
on 20 nodes. Observe that, although the algorithm tends to
create long cycles and the majority of nodes have degree
two, it fails to recreate the exact structure of the ring graph



— { I
S ) \ |
¥ / N i
. - . - -4
—— -—
(a) (b)
e . e e
’ » ~ "
7-' .I . \
¥ P A - e
\'I . L I'. !
4 f - \ W
\ » . /
- i . | e
e e %= -
. \

Fig. 3. Networks returned by our algorithm when trying to match the first
four central moments of a ring on 20 nodes.

CDF

eigenvalues

Fig. 4. Empirical cumulative distribution of eigenvalues for the ring graph
with 20 nodes (blue plot) and the graphs in Fig. 3(a) (red), Fig. 3(b) (green),
Fig. 3(c) (magenta) and Fig. 3(d) (cyan).

due to the local nature of the algorithm (as in Example 1).
However, although the structure of the resulting networks is
not exactly the desired ring graph, their spectral properties
are remarkably close to those of a ring. In Fig. 4, we
illustrate the empirical cumulative distribution functions of
the eigenvalues of the ring graph (blue plot), versus the four
empirical cumulative distribution functions corresponding to
the graphs in Fig. 3.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have described a fully decentralized al-
gorithm that iteratively modifies the structure of a network of
agents with the objective of controlling the spectral moments
of the Laplacian matrix of the network. Although we assume
that each agent has access to local information regarding the
graph structure, we show that the group is able to collectively
aggregate their local information to take a global optimal
decision. This decision corresponds to the most beneficial
link addition/deletion in order to minimize an error function
that involves the first four Laplacian spectral moments of the
network. The aggregation of the local information is achieved

via gossip algorithms, which are also used to ensure network
connectivity throughout the evolution of the network.
Future work involves identifying sets of spectral moments
that are reachable by our control algorithm. (We say that a
sequence of spectral moments is reachable if there exists a
graph whose moments match the sequence of moments.) Fur-
thermore, we observed that fitting a set of low-order moments
does not guarantee a good fit of the complete distribution of
eigenvalues. In fact, there are important spectral parameters,
such as the algebraic connectivity, that are not captured by a
small set of spectral moments. Nevertheless, we observed in
numerical simulations that fitting the first four moments of
the eigenvalue spectrum often achieves a good reconstruction
of the complete spectrum. Hence, a natural question is to
describe the set of graphs most of whose spectral information
is contained in a relatively small set of low-order moments.
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