Temporal Logic Task Allocation in Heterogeneous
Multi-Robot Systems

Xusheng Luo and Michael M. Zavlanos, Senior Member, IEEE

Abstract—We consider the problem of optimally allocating
tasks, expressed as global Linear Temporal Logic (LTL) spec-
ifications, to teams of heterogeneous mobile robots of different
types. Each task may require robots of multiple types. To obtain
a scalable solution, we propose a hierarchical approach that first
allocates specific robots to tasks using the information about
the tasks contained in the Nondeterministic Biichi Automaton
(NBA) that captures the LTL specification, and then designs
low-level paths for robots that respect the high-level assignment.
Specifically, motivated by ‘“lazy collision checking” methods in
robotics, we first prune and relax the NBA by removing all neg-
ative atomic propositions, which simplifies the planning problem
by checking constraint satisfaction only when needed. Then, we
extract sequences of subtasks from the relaxed NBA along with
their temporal orders, and formulate a Mixed Integer Linear
Program (MILP) to allocate these subtasks to robots. Finally, we
define generalized multi-robot path planning problems to obtain
low-level paths that satisfy both the high-level task allocation and
the constraints captured by the negative atomic propositions in
the original NBA. We show that our method is complete for a
subclass of LTL that covers a broad range of tasks and present
numerical simulations demonstrating that it can generate paths
with lower cost, considerably faster than existing methods.

Index Terms—Formal methods in robotics and automation,
task planning, path planning for multiple mobile robots or agents,
motion and path planning.

I. INTRODUCTION

Robot motion planning traditionally consists of generating
trajectories between a start and a goal region, while avoiding
obstacles [[1]. More recently, new planning methods have been
proposed that can handle a richer class of tasks than standard
point-to-point navigation that also include temporal goals
subject to time constraints. Such tasks can be captured using
formal languages, such as Linear Temporal Logic (LTL) [2],
and include sequencing or coverage [3l], data gathering [4],
intermittent communication [3]], and persistent surveillance [6],
to name a few. A survey on formal specifications and synthesis
techniques for robotic systems can be found in [7].

In this paper, we consider LTL tasks that require robots
of different types to collaborate to satisfy the specification.
Each task may require robots of multiple types to accomplish.
The specific robots assigned to each task are immaterial, as
long as they are of the desired type. An example of such
an LTL task is: Ar least two robots of type 1 pick up the
mail by visiting houses in a given order. Next, visit a delivery
site. Never leave the delivery site until one ground robot of
type 2 is present to pick up the mail. Repeat this process

Xusheng Luo and Michael M. Zavlanos are with the Department of Mechani-
cal Engineering and Materials Science, Duke University, Durham, NC 27708,
USA. {xusheng.luo, michael.zavlanos} @duke.edu. This work is supported in
part by ONR under agreement #N00014-18-1-2374 and by AFOSR under
the award #FA9550-19-1-0169.

infinitely often. In this task, several robots are required to
work cooperatively and meet simultaneously at the same place.
The specific robots to participate are not specified by the LTL
formula. Instead, it is only required that no less than five robots
of type 1 and one robot of type 2 collaborate to accomplish
this task. We refer to this problem as the Multi-Robot Task
Allocation (MRTA) problem for LTL tasks, in short, LTL-
MRTA. Existing control synthesis methods under temporal
logic specifications, such as the ones proposed in [8-10] build
a product automaton composed of the Nondeterministic Biichi
Automaton (NBA) that captures the LTL specification and the
discrete transition systems describing the motion of robots.
Then, these methods employ graph search techniques to find
the optimal plan that satisfies the LTL specification. However,
as the number of robots, the size of the environment, and the
complexity of the LTL task grows, the size of this product
graph grows exponentially large and, therefore, graph search
methods become intractable. This is more so the case for LTL-
MRTA problems as possible assignments of robots to tasks
increases the complexity of the LTL specification dramatically.

To mitigate the computational complexity of the LTL-
MRTA problem, we propose a novel hierarchical approach
that first allocates robots to tasks using the information about
tasks provided by the NBA, and then designs low-level robot
paths that respect the high-level assignment. Specifically, we
first prune and relax the NBA by removing all negative
atomic propositions. This step is motivated by “lazy collision
checking” methods in robotics [11] and allows to simplify
the planning problem by checking constraint satisfaction only
when needed. Then, we extract sequences of subtasks from the
relaxed NBA along with their temporal orders, and formulate a
Mixed Integer Linear Program (MILP), inspired by the vehicle
routing problem [12], to allocate these subtasks to robots,
while respecting the temporal order constraints. The solution
to this MILP generates a time-stamped task allocation plan
for each robot, that is a sequence of essential waypoints that
the robot needs to visit. Finally, given this time-stamped task
allocation plan for each robot, we formulate a sequence of gen-
eralized multi-robot path planning (GMRPP) problems, one
for each subtask, to obtain executable paths that also respect
the negative atomic propositions that were relaxed from the
original NBA. We show through extensive simulations that
our method can handle LTL-MRTA problems with up to 10
states in the product graph, considerably outperforming exist-
ing methods. Moreover, we provide theoretical guarantees on
the completeness and soundness of our proposed framework,
under mild assumptions on the structure of the NBA that were
satisfied by all meaningful LTL specifications we considered
in practice. While not theoretically optimal, our method is

still able to improve on the cost of the returned plans, unlike
existing methods in the literature that only focus on feasibility.

A. Related work

In existing literature on optimal control synthesis methods
from LTL specifications, LTL tasks are either assigned locally
to the robots in a multi-robot team, as in [10l [13]] or a global
LTL specification is assigned to the team that captures the
collective behavior of all robots. In the latter case, the global
LTL specification can explicitly assign tasks to the individual
robots, as in [14H16], or it may not explicitly assign tasks to
the robots as in [17H20], and our current work in this paper.

Global temporal logic specifications that do not explicitly
allocate tasks to robots typically need to be decomposed in
order to obtain the required allocation. For example, [21, 22]]
decompose a global specification directly into local specifi-
cations and assign them to individual robots. Similarly, [23-
25| decompose a global specification into multiple subtasks by
exploiting the structure of the finite automata. Particularly, [24]]
converts temporal planning problems to standard planning
problems by defining actions based on transitions in the NBA,
while [23]] defines subtasks associated with transitions in the
NBA and synthesize plans for these subtasks that can be reused
to efficiently synthesize plans for new LTL formulas. [25] also
defines subtasks associated with transitions in the automaton,
and use reinforcement learning to learn plans that execute these
subtasks under uncertainty. However here, we do not assume
that these subtasks are preassigned to the robots.

Temporal logic control synthesis without an explicit as-
signment of robots to tasks has been considered in [26] that
combine the vehicle routing problem with metric temporal
logic specifications and leverage MILP to solve this problem
for heterogeneous robots. However, this approach can only
handle finite horizon tasks and does not design the low-level
executable paths as we do here. An alternative approach is
proposed in [27] that decomposes a global automaton into
individual automata that are assigned to the heterogeneous
robots and then builds a synchronous product of these au-
tomata to synthesize parallel plans. However, the size of
the synchronous product automaton grows exponentially large
with the number of robots. Also, the requirement that parallel
plans exist does not allow application of this method to tasks
that lack such parallel executions. In relevant literature, teams
of homogeneous robots have also been modeled using Petri
Nets as in [20, 28]]. Specifically, [20] proposes a job shop
problem under safe temporal logic specifications, but do not
consider the “eventually” operator so that liveness in terms
of good future outcomes can not be guaranteed. Additionally,
this approach only focuses on robot coordination at the task
level without considering execution. To the contrary, [28]]
selects multiple shortest accepting runs in the NBA and for
each accepting run, determine whether an executable plan ex-
ists. Finally, [29H31]] automatically decompose the automaton
representation of the LTL formula into independent subtasks
that can be fulfilled by different robots. However, they only
consider LTL formulas that can be satisfied by finite robot
trajectories. Also, subtasks subject to precedence relations can
only be executed by a single robot.

Common in the above approaches is that they do not
consider cooperative tasks where robots need to meet at a
common location to complete a task, Such tasks require strong
synchronization between robots. In our recent work [32, 33,
we have proposed a sampling-based planning method named
STyLuS* that incrementally builds trees to approximate the
product of the NBA and the model of the team. Using the pow-
erful biased sampling method proposed in [33], STyLuS* can
synthesize plans for product automata with up to 108%° states
without considering collision avoidance. However, STyLuS*
requires global LTL specifications that explicitly assign tasks
to robots. Although a subset of specifications we consider here
can be converted into explicit LTL formulas by enumerating all
possible task assignments and connecting them with “OR” op-
erators, this would result in exponentially long LTL formulas.
Furthermore, the biased sampling strategy in STyLuS* needs a
fixed assignment of robots to tasks and biases search towards
finding a plan for this fixed assignment. If the assignment is
not given, biased STyLuS* will need to be run combinatorially
many times, one for each possible assignment. With unbiased
sampling, [32] shows that STyLuS* can only solve problems
with product automata that have 10'C states. Instead, our
proposed method can synthesize plans for problems with 10%°
states while considering collision avoidance. On the other
hand, model-checkers like NuSMV [34], focus on finding
feasible paths and are incapable of optimizing cost. As stated
in [33]], NuSMV can only handle problems with 103° states,
and can not easily process exponentially long LTL formulas
generated by explicitly expressing task assignments.

Among other methods that focus on cooperative tasks, [19]]
focuses on specifications capturing behaviors of homogeneous
robotic swarms at the swarm and individual levels, but they
can only impose universal or existential constraints, that is, all
robots or some robots visit a certain region. This limitation is
addressed in [35) [36] that relies on counting linear temporal
logic (cLTL+/cLTL) to capture constraints on the number
of robots that must be present in different regions. The
authors formulate an Integer Linear Program (ILP) inspired by
Bounded Model Checking techniques [37], but can only guar-
antee feasibility of the resulting paths. Instead our hierarchical
method also takes into consideration the quality of the solution
at each level. A sequential planning approach is proposed in
[38]] that augments the LTL specification by introducing time
and, unlike our proposed approach, plans low-level plans for
the robots, one at a time, while treating the other robots as
obstacles. Common in the methods in [35, |36, [38] is that
the size of the workspace has a significant effect on the
computation time. To mitigate the complexity due to the size
of the workspace, [39]] proposes a hierarchical framework that
abstracts the workspace by aggregating states with the same
observations. As we show in Section [VII} our proposed method
scales better than the method in [39], and provides lower
cost solutions with less runtime. Also, unlike our method, the
completeness of solutions is not guaranteed in [39].

B. Contributions

We propose a new hierarchical approach to the LTL-MRTA
problem that first assigns robots to tasks and then plans robot

paths that satisfy the high level assignment. Our approach
differs from common methods that rely on the product au-
tomaton [8H10|] or on the Bounded Model Checking [37] in
that it directly operates on the NBA. Under mild assumptions
on the NBA that are satisfied by a subclass of LTL formulas
that cover a broad class of tasks in practice, we showed that
our method is complete and sound. While not theoretically
optimal, our method still incorporates optimization steps to
improve on the cost of the returned plans. To the best of
our knowledge, this is the first LTL-MRTA method that is
both complete for a subclass of LTL and includes operations
to optimize the synthesized plans. One unique aspect of our
approach is a clever pruning and relaxation of the NBA that
removes all negative atomic propositions, and is motivated
by “lazy collision checking” methods in robotics. This step
significantly simplifies the planning problem by allowing to
check constraint satisfaction only when needed and, as a
result, contributes to significantly increasing scalability of
our method. To the best of our knowledge, this is the first
time that “lazy collision checking” methods that are common
in point-to-point navigation are used for high-level robot
planning. Another unique aspect of our method is its ability to
infer the temporal order of tasks from the automaton, which
can capture the parallel execution of subtasks. Compared to
existing methods, our approach returns lower cost plans in
significantly less time.

The rest of the paper is organized as follows. In Sections
and |lIl we present preliminaries and define the problem formu-
lation, respectively. We describe the high-level task assignment
component in Sections [[V] and [V] Specifically, in Section
we prune and relax the NBA, identify subtasks from the NBA
and infer temporal orders between them. Then, in Section E]
we formulate a MILP to obtain the high-level plans. In
Section we examine the completeness and soundness of
these plans, while in Section we present simulation results.
Finally, Section concludes the paper. For completeness,
the low-level component of our method to obtain executable
paths, which is based on existing multi-robot path planning
techniques, is presented in Appendix B in the full version [40].

II. PRELIMINARIES
A. Linear temporal logic

Linear Temporal Logic (LTL) is composed of a set of atomic
propositions AP, the boolean operators, conjunction A and
negation —, and temporal operators, next () and until ¢/ [2].
LTL formulas over AP follow the grammar

p=T|m|¢1Ad2| 0] O¢|d1U s,

where T is unconditionally true and 7 is the boolean-valued
atomic proposition. Other temporal operators can be derived
from U such as ¢¢ means ¢ will be eventually true sometime
in the future and (J¢ means ¢ is always true from now on.
An infinite word w over the alphabet 27, the power set
of the set of atomic propositions, is defined as an infinite
sequence w = 0g01... € (2“47’)“’, where w denotes an
infinite repetition and o}, € 247, Vk € N. The language
Words(¢) = {w|w | ¢} is defined as the set of words that
satisfy the LTL formula ¢, where =C (247)“ x ¢ is the

satisfaction relation. An LTL formula ¢ can be translated into
a Nondeterministic Biichi Automaton (NBA) [41]]:

Definition 2.1: (NBA) A Nondeterministic Biichi Automa-
ton B is a tuple B = (Q, Qy, X, —p, Qr), where Q is the
set of states; Qp C Q is a set of initial states; ¥ = 247 is
an alphabet; —-pC Q x 3 x Q is the transition relation; and
Or C Q is a set of accepting states.

An infinite run pp of B over an infinite word w =
000102 ..., 0 € X, Vk € N, is a sequence pg = qoq142 - - -
such that g9 € Qo and (gx,0k,qk+1) €—, Vk € N. An
infinite run pp is called accepting if Inf(pp) N Qr # O,
where Inf(pp) represents the set of states that appear in pp
infinitely often. If an LTL formula is satisfiable, then there
exists an accepting run that can be written in the prefix-suffix
structure such that the prefix part, connecting an initial state to
an accepting state, is traversed only once and the suffix part, a
cycle around the accepting state, is traversed infinitely often.
The words o that induce an accepting run of B constitute the
accepted language of B, denoted by L. It is shown in [2]] that
for any given LTL formula ¢ over a set of atomic propositions
AP, there exists a NBA By over alphabet > = 24P such
that Lp, = Words(¢), where Words(¢) is the set of words
accepted by ¢.

B. Fartially ordered set

A finite partially ordered set or poset P = (X, <p) is a
pair consisting of a finite base set X and a binary relation
<pC X x X that is reflexive, antisymmetric, and transitive.
Let z,y € X be two distinct elements. We write * <p y if
(x,y) €<p, and z|| py if « and y are incomparable. Moreover,
we say x is covered by y or y covers z, denoted by = <p v,
if x <p y and there is no distinct z € X such that x <p
z <p y. An antichain is a subset of a poset in which any two
distinct elements are incomparable. The width of a poset is the
cardinality of a maximal antichain. Finally, a chain is a subset
of a poset in which any two distinct elements are comparable.
The height of a poset is the cardinality of a maximal chain.

A linear order Lx = (X, <j,) is a poset such that x <y, y,
x =y or y <r x holds for any pair of =,y € X. A linear
extension Lp = (X, <p) of a poset P is a linear order such
that z < y if x <p y, i.e., a linear order that preserves the
partial order. We define =p as the set of all linear extensions
of a poset P. Note that a poset and its linear extensions share
the same base set X p. Given a collection of linear orders =,
the poset cover problem focuses on reconstructing a single
poset P or a set of posets {Py,..., P} such that Ep = = or
UK | =p = Z. As shown in [42], the poset cover problem is
NP-complete. Moreover, the partial cover problem focuses on
finding a single poset P such that =p contains the maximum
number of linear orders in =, i.e., =p C = and 3P’ s.t. Ep/ C
E and |Ep/| > |Ep|. It is shown in [42] that the partial cover
problem can be solved in polynomial time.

III. PROBLEM DEFINITION

A. Transition system

Consider a discrete workspace containing | € N labeled
regions, where each region can span multiple cells, and denote
by £ = {{i}repy the set of regions, where [] is the shorthand

notation for {1,...,1}. We also assume that the workspace
contains obstacles which do not overlap with regions. A cell
is region-free if it does not belong to any region, and a path
connecting two regions is label-free if it only passes through
region-free cells. We represent the workspace by a graph F =
(S, —) where S is the finite set of free cells and - C Sx .S
captures the adjacency relation.

Given the workspace E, we consider a team of n het-
erogeneous robots. We assume that these robots are of m
different types and every robot belongs to exactly one type.
Let IC;, j € [m], denote the set that collects all robots of type
jysothat 37, |K;| =nand K;NK; = (0 if j # 5/, where
| - | is the cardinality of a set. We collect all n robots in the
set R, i.e., R = {K;} e[m]- Finally, we use [r, j] to represent
robot r of type j, where r € K;, j € [m]. To model the motion
of robot [r, j] in the workspace, we define a transition system
(TS) for this robot as follows.

Definition 3.1: (TS) A transition system for robot [r, j] is
a tuple TS, ; = (S, s ., —,;, 1L, j, L, ;) where: (a) S is the
set of free cells; (b) s; ; is the initial location of robot [r, j];
(©) =r;S—E UUs, es{(srj,5r;)} is the transition relation
that allows the robots to remain idle or move between cells;
(d) I, ; = Uep{pF 7} U {e} where the atomic proposition
pl; is true if robot [r, j] is at region ¢} and e denotes the
empty label; and (e) L, ; : S — I, ; is the labeling function
that returns the atomic proposition satisfied at location s,. ;.

Next we define the product transition system (PTS), which
captures all possible combinations of robot behaviors.

Definition 3.2: (PTS) Given n transition systems TS,. ; =
(8,82 ;=g My j, Ly j), the product transition system is a
tuple PTS = (S, s° ,—>,H,L) where: (a) S = S x --- X
S is the finite set of collective robot locations; (b) s° are
the initial locations of the robots; (¢) —C S™ x S™ is the
transition relation so that (s,s’) €— if s, ; —,; s;.; for all
re KV e [ml; (@) I = Uieqie, 1, jeiml ke T} U {e},
where the atomic proposition 7;’ ; is true if there exist at least
i robots of type Jj, denoted by (z, j), at region ¢} at the same
time, ie., 7F; < [{r € Kj : Ly ;(s,;) = py;}| > i; (e) and
L:S"— Qﬂ is the labeling function. '

B. Task specification

In this paper, we consider MRTA problems where the task
can require the same fleet of robots to visit different regions
in sequence, e.g., to deliver objects between different regions.
To capture such tasks, we define induced atomic propositions
over the set IT defined in Definition [3.2] as follows.

Definition 3.3: (Induced atomic propositions) For each ba-
sic atomic proposition 7% '; € 1L, we define an infinite set
of induced atomic propositions {7r Xlyen, where x is a
connector that binds the truth of atomic propositions with
identical 7,7 and x. Specifically, when x = 0, wf’f is
equivalent to 7Tk whose truth is state-dependent. When x # 0,
the truth of 7rk’JX is state-and-path-dependent, meaning that it
additionally depends on other induced atomic propos1t10ns that
share the same i, j and . That is, both 7; ’]X and 7rk]X with

x # 0 are true if the same 4 robots of type j visit regions

and ly,. Furthermore, the negative atomic proposition —nrk’jx

Fig. 1. Tlustration of the workspace for Example [T}
is equivalent to its basic counterpart ﬁwﬁ o

robots are at region /.

i.e., less than (4, j)

Let AP collect all basic and induced atomic propositions and
denote by ¥ = 247 its power set. In what follows, we omit
the superscript x when xy = 0. We denote by LTLX, the set
of formulas defined over the set of basic and induced atomic
propositions and by LTL?, the set of formulas defined only
over basic atomic propositions, respectively. Clearly, LTLX D
LTL?, which means that LTLX can capture a broader class of
tasks. While there exists literature on feasible control synthesis
over LTL® [35] [36], to the best of our knowledge there is
no work on optimal control synthesis over LTLX formulas.
Next, we introduce the notion of valid temporal logic tasks.

Definition 3.4: (Valid temporal logic task) A temporal logic
task specified by a LTLX formula defined over AP is valid
if atomic propositions with the same nonzero connector
involve the same number of robots of the same type.

Example 1: (Valid temporal logic tasks) Consider a mail
delivery task amidst the COVID-19 pandemic (shown in
Fig. where three robots of type 1 (green stars) and two
robots of type 2 (blue circles) are located at region ¢, and
£y, respectively, /5 is an office building that the robots visit
to pick up the mail, ¢35 and /5 are delivery sites, and ¢4 is a
control room from where robots are guided to the orange area
to get disinfected and then drop off the mail at the delivery
site ¢3. Consider two delivery tasks: (i) Two robots of type 1
visit building ¢5 to collaboratively pick up the mail and deliver
it to the delivery site {3, and one robot of type 2 must visit
the control room /4 to disinfect robots of type 1 before they
get to the delivery site /3. (ii) One robot of type 1 travels
between building /5 and the delivery site /3 back and forth
to transport equipment, assuming that the disinfection area
operates automatically after task Observe that in Fig. [T
the atomic propositions satisﬁed by initial robot locations are
7r3 ; and 772 5. Tasks|(i)| and [(ii)[can be captured by the valid
formulas ¢ = ((71'2 1/\—m'2 1)/\<>71' DAOmE o ATE Urt 2
and ¢ = OO(r1] 1A Om1). Note ‘that when binding two
atomic proposmons the value of x 1s immaterial as long as it
is the same non- zero number. Therefore, ¢ can also be Written
as D()(wl | /\<>7r) However, both formulas <>(7r1 1 /\<>7r)
and <>(7722 A <>7r2 1) are invalid as they connect different
numbers of robots ¢ and robot types j, respectively.

Let s' be the collective state at time t. A path of length h is
defined as 7 = s° ... s" and it captures the collective behavior
of the team such that s®~! — s, V¢ € [h]. Given a valid LTLX
formula ¢, a path 7 = 7P[7%{]“ in a prefix-suffix structure

that satisfies ¢ exists since there exists an accepting run in

prefix-suffix form, where the prefix part 7P = s0... 5" is

executed once followed by the indefinite execution of the suffix
part T = shi | ghitheghithetl where shithetl — gh
[2]. We say that a path 7 satisfies ¢ if (a) the trace, defined
as trace(r) := L(s%)... L(s")[L(s™)... L(sMThe+1)]w
belongs to Words(¢"), where ¢ is obtained by replacing all
induced atomic propositions in ¢ by their counterparts with
the zero connector and (b) it is the same (i, j) that satisfy
the induced atomic propositions ﬂﬁ’j" in ¢ sharing the same
nonzero connector .

C. Problem definition
Given a path 7.; = 89, s, ... 5" of length h
for robot [r,j], we define the cost of 7,; as J(r.;) =
?;01 d(si)j,sfgl), where d : S x S — RT U{0} is a cost
function that maps a pair of free cells to a non-negative value,
for instance, travel distance or time. The cost of path 7 that

combines all robot paths 7. ; of length & is given by

Jr)y= Y J(ry). (1)

rek;,j€[m]

For plans written in prefix-suffix form, we get
J(r) = BJ(r7) + (1 = B)J(T™), 2)

where 8 € [0,1] is a user-specified parameter. Then, the
problem addressed in this paper can be formulated as follows.

Problem 1: Consider a discrete workspace with labeled
regions and obstacles, a team of n robots of m types, and a
valid formula ¢ € LTLX. Plan a path for each robot such that
the specification ¢ is satisfied and the cost in (2)) is minimized.

We refer to Problem [Il as the Multi-Robot Task Allocation
problem under LTL specifications or LTL-MRTA. This is
a single-task robot and multi-robot task (ST-MR) problem,
where a robot is capable of one task and a task may require
multiple robots. Since the ST-MR problem is NP-hard [43], so
is the LTL-MRTA problem. Consequently, existing approaches
to this problem become intractable for large-scale applications
[35]. In this work, we propose a new hierarchical framework
to solve LTL-MRTA problems efficiently.

D. Assumptions

In this section, we discuss assumptions on the workspace
and the NBA translated from the LTL specifications that are
necessary to ensure completeness of our proposed method.

1) Workspace: The following assumption ensures that re-
gions are well-defined and mutually exclusive.

Assumption 3.5: (Workspace) Regions are disjoint, and
each region spans consecutive cells. There exists a label-free
path between any two regions, between any two label-free
cells, and between any label-free cells and any regions.

If regions are overlapping or span multiple clusters of cells, we
can define additional atomic propositions to satisfy Assump-
tion [3.5] Assumption [3.5] implies that there are no “holes”
inside regions that generate different labels, label-free cells
are connected, and each region is adjacent to a label-free cell.

2) Nondeterministic Biichi Automaton (NBA): Given a team
of n robots and an LTLX formula ¢, we can find a path 7
that satisfies ¢ by operating on the corresponding NBA Ay =

(V, €), which can be constructed using existing tools, such as
LTL2BA developed by [44]]; see also Fig. [2] for the NBA of
tasks [(1)] and Note that the NBA is essentially a graph.
Thus, in the remainder of this paper, we refer to the NBA
by the graph A,. Before discussing assumptions on the NBA
Ay, we present a list of pre-processing steps to obtain an
“equivalent” NBA that does not lose any feasible paths that
satisfy the specification ¢. The goal is to remove infeasible
and redundant transitions in the NBA to reduce its size.

Let the propositional formula + associated with a transition
V1 2, vy in the NBA Ay be in disjunctive normal form (DNF),
ie, v = Vyep Aqegp(ﬁ)ﬁﬁgx, where the negation operator
can only precede the atomic propositions and P and Q,, are
proper index sets. Note that any propositional formula has an
equivalent DNF [2]. We call C) = A o, (—\)7'(2 X the p-th
clause of ~ that includes a set Q, of positive and negative
literals and each positive literal is an atomic proposition
Wﬁ’jx € AP. Let cls(y) denote the set of clauses in ~.
Let IitsJ“(CI’]Y) and lits™ (C)) be the positive subformula and
negative subformula, consisting of all positive and negative
literals in the clause C; . Those subformulas are T (constant
true) if the corresponding literals do not exist. In what follows,
we do not consider self-loops when we refer to edges in
Ay, since self-loops can be captured by vertices. We call the
propositional formula v a vertex label if v; = vy, otherwise,
an edge label. With a slight abuse of notation, let v:)V — X
and v : VXV — X be the functions that map a vertex and edge
to its vertex label and edge label, respectively. Given an edge
(v1,v2), we call labels y(v1) and ~y(ve) the starting and end
vertex labels, respectively. Next, we pre-process the NBA Ay
by removing infeasible clauses and merging redundant literals.
Consider a vertex or edge label v in Ay,

(1) Absorption in lits™ (C]): For each clause C] € cls(y),
we delete the positive literal wf) ; € lits™ (Cy), replacing it with
T, if another wf,’;/ = Iits+(C;) exists such that 7 < ¢’. This
is because if (i’,j) are at region {j, i.e., wf,’;/ is true, so is
7 ;. Similarly, we replace 7} ; by 7}, ; if i > ¢/, since i — '
additional robots are needed to make 7} ; true if wf,’f;/ is true.

(2) Absorption in lits™ (C)): We delete the negative literal
ﬂwﬁj € lits™ (C)), if another —wrf,,j € lits™ (C) exists such
that ¢’ < 4. This is because if —wrik,d is true, so is ﬂﬂ'f’j.

(3) Mutual exclusion in Iits+(Cg): We delete the clause
C) € cls(v), replacing it with constant false L, if there exist

two positive literals 775 X ,Wﬁlj’x € lits*(C)) such that k # &/
and x # 0. The reason is that the same i robots of type j
cannot be at different regions at the same time.

(4) Mutual exclusion in lits™ (C)) and lits™ (C)): We delete
the clause C) € cls(v) if there exists a positive literal ﬂ'ﬁ ’]-X €
Iits*(Cg) and a negative literal —‘ﬂ'f,’]» € lits™ (C)) such that
¢/ < 4. This is because these literals are mutually exclusive.

(5) Violation of team size: For each clause C) € cls(y),
let lits™ (j') denote literals in lits™ (C;) that involve robots of

type 7/, ie., litsT (/) = {ijx € lits™(C))|j = j'}. We delete

the clause C) if the total required number of robots of type

Jj exceeds the size |IC;], i.e., if there exists j € [m] such that

wa&xentsﬂj)i > [KG.

21 0 3,1
[myy ATl

(a) NBA A for the task (i)

(b) NBA Ay for the task (ii)

Fig. 2. NBA Ay for tasksand where self-loops are omitted and the
corresponding vertex labels are placed in square brackets.

Note that these pre-processing steps do not compromise any
accepting words in £(.A,) that can be generated by a feasible
path. With a slight abuse of notation, we continue to use Ay
to refer to the NBA obtained after these pre-processing steps.

Consider an edge e = (v1,v2) and its starting vertex v;
in A, and assume that the current state of A, is vertex
v1. To transition to v, certain robots need to simultaneously
reach certain regions or avoid certain regions in order to
make y(v1,vy) true, while maintaining «(v1) true en route.
We assume that the transition to vy occurs immediately once
~(v1, v2) becomes true. Therefore, we can define by a subtask
the set of actions that need to be taken by robots in order to
activate a transition in the NBA.

Definition 3.6: (Subtask) Given an edge (vi,v2) in the
NBA Ay, a subtask is defined by the associated edge label
v(v1,v2) and starting vertex label y(vq).

Subtasks can be viewed as generalized reach-avoid tasks
where robots visit or avoid certain regions (the “reach” part)
while satisfying the starting vertex labels along the way (the
“avoid” part, which here is more general than avoiding obsta-
cles). Observe that every accepting run in the NBA consists of
a sequence of subtasks. However, not all sequences of subtasks
are feasible. In what follows, we restrict the accepting runs to
those that can complete the task by first providing insights
using the following example.

Example 1: continued (Subtasks) The NBAs for tasks |(1)
and before pre-processing are shown in Fig. After
pre-processing, the NBA 44 for task does not change
whereas some labels (orange color) in the NBA Ay for task
become L due to step In Fig. Vinit is the initial
vertex and vg is the accepting vertex. Observe that all vertices
have self-loops except for the initial vertex wiy. In each
accepting run, €.g., Vinit, V1, V2, V3, Us, Vg, the satisfaction of
an edge label leads to the satisfaction of its end vertex label,
assuming this end vertex label is not L. For instance, label
751 A —m3, of edge (vi,vz) implies label -3, of vertex
v9, and label —|7r§,1 of edge (Vinit,v1) implies label —wr%l
of its end vertex v;. Intuitively, the completion of a subtask
indicated by the satisfaction of its edge label, automatically
activates the subtasks that immediately follow it indicated by
the satisfaction of their starting vertex labels. This is because
once the edge is enabled, its end vertex label should be
satisfied at the next time instant; otherwise, progress in the
NBA A, will get stuck. The same observation also applies

Yoy
/

“g Uprior

’
Uprior

Unext

° 8. \
Vaccept ./

Fig. 3. Graphical depiction of the accepting run in the prefix-suffix structure
when vaccept does not have a self-loop. The shaded blue line and the orange
loop represent the prefix and suffix part, respectively. The arrow indicates the
progression direction and the gray circles indicate the self-loops.

to the NBA in Fig. [2(b)] where the vertex vy is both an
initial and accepting vertex and vs is another accepting vertex.
The accepting run iy, U2, v3, (v1, U2, v3)* includes one pair
of initial and accepting vertices, vipi; and vs, and the accepting
Tun vjpig, V2, V1, Vis, (although infeasible) includes one pair of
initial and accepting vertices, vy and vip. Note that we view
the two vy, vertices differently, one as the initial vertex and
the other as the accepting vertex. Furthermore, label 71'%} of
edge (vq,vo) implies label T of its end vertex vo; the same
holds for the edge (va, vini) and its end vertex vip; (although
infeasible). It is noteworthy that even though the accepting
vertex vz does not have a self-loop, the satisfaction of the label
wf% of its incoming edge (v2,vs) leads to the satisfaction of
the label T of its outgoing edge (vs3,v1). If the satisfaction
of the incoming edge label does not imply satisfaction of the
outgoing edge label, then progress in the NBA will get stuck
at v3 since the label 77"} /\77?% of edge (vs, vini¢) is infeasible
and the transition between regions {s and {3 requires more
than one time steps; see Fig. which makes the label wf} of
edge (vs,vs9) unsatisfiable at the next time instant.

Motivated by the observations in Example [T} we introduce
the notions of implication and strong implication between two
propositional formulas. Then, we define a restricted accepting
run in the NBA A, in a prefix-suffix structure. The complete-
ness of our method relies on the assumption that the set of
restricted accepting runs in the NBA 44 is nonempty.

Definition 3.7: (Implication and strong implication) Given
two propositional formulas v and +" over AP, we say that
formula ~ implies +’, denoted by V= ~', if for each clause
Cy € cls(7), there exists a clause C, € cls(v’) such that C), is

a subformula of C}, i.e., all literals in C;’,/ also appear in CJ. By
default, T is a subformula of any clause. In addition, formula
~ strongly implies +/, denoted by v = /', if v =+, and
for each clause C;,/ € cls(’), there exists a clause C) € cls(y)
such that C;’// is a subformula of C}.

Intuitively, if v = 4 or v =>4 +/, robot locations that
satisfy ~ also satisfy +'.

Definition 3.8: (Restricted accepting run) Given the pre-
processed NBA A, corresponding to an LTLX formula,
we call any accepting run in a prefix-suffix structure p =
Ppre [pSUf]w -+ 5 Upriors Vaccept [vnexh cee 7U£)rior7 Uaccepl]w (see
Fig. [3)), a restricted accepting run, if it satisfies conditions:
(a) If a vertex is both an initial vertex vy and an accepting
VerteX vyecept, WE treat it as two different vertices, namely an
initial vertex and an accepting vertex. The accepting vertex
Vaccept appears only once at the end in both the prefix and suffix
parts. In the prefix part vo, . . . , Uprior, Vaccept» if @ vertex appears

= Vg, -

multiple times, all repetitive occurrences are consecutive. The
same holds for the suffix part vpext, - - - ,v;rior, Vaccepts

(b) There only exist one initial vertex vy and one accepting
VerteX Vaccept 1N the accepting run (they can appear multiple
times in a row). Different accepting runs can have different
pairs of initial and accepting vertices;

(c) In the prefix part, only initial and accepting vertices, vg
and Vaecept, are allowed not to have self-loops, i.e., their vertex
labels can be L. In the suffix part, only the accepting vertex
Vaccept 18 allowed not to have a self-loop;

(d) For any two consecutive vertices vy, vy in the accepting
run p, if v1 # V2, V2 # Vaccepr and vy has a self-loop, then
the edge label v(v1, v2) strongly implies the end vertex label
Y(v2), ie., ¥(v1,v2) =5 Y(v2);

(e) In the suffix part pS”f, if Vaccept = Unext (this happens when
Vaccept has a self-loop), then psuf only contains the vertex vaccept.
Meanwhile, the label of the edge (Uprior; Vaccept) implies the
label of the vertex Usccepts 1-€., Y(Upriors Vaccept) == ¥ (Vaccept)$
(f) In the suffix part, if Uscepr 7 Vnext (this can happen
when vyecepe does not have a self-loop), then the label of the
edge (Vprior, Vaccept) implies the label of the edge (Vaccepts Vnext)s
i.e., Y(Vpriors Vaccept) == ¥(Vaccepts Unext). Also, the label
¥ (Upriors Vaccept) implies the label of the edge (Uériorvvaccept)’
i.e., ¥(Vprior; Vaccept) = 'y(v[’)rior,vaccept). Note that vpro, and
Uprior €an be different.

In what follows, we discuss the conditions in Definition [3.8]
in more detail. Specifically, conditions [(a)]and[(b)|require that a
restricted accepting run is “simple”. Specifically, condition [(a)]
states that vertices vg and v,ccept can be treated differently since
they mark different progress towards accomplishing a task.
The prefix and suffix parts of a restricted accepting run end
OnCe Vyecept 18 Teached, as in [8]. By aggregating consecutive
identical vertices in the prefix part of a restricted accepting
run into one single vertex, there are no identical vertices in
the “compressed” prefix part. That is, it contains no cycles.
The presence of a cycle is redundant since it implies negative
progress towards accomplishing the task. The same applies to
the suffix part. On the other hand, condition states that a
restricted accepting run is basically an accepting run defined
in Section that is further defined over a pair of initial
and accepting vertices. In Section we extract smaller sub-
NBAs from the NBA 44 for each pair of initial and accepting
vertices, which helps reduce complexity of the problem.

Conditions [(c)l{(f)| require that the completion of a subtask in
a restricted accepting run automatically activates the subtasks
that immediately follow it; see Example [T} This ensures
that robots are given adequate time to undertake subsequent
subtasks after completing the current subtask. Accepting runs
that do not satisfy conditions [(c)}{(d)] are disregarded. In fact,
in Section we prune vertices and edges in the NBA that
violate these conditions, further reducing the size of the NBA.
Finally, the implication «(Vprior, Vaccept) == ¥(Vaccept Unext) i1
condition [(f)] requires that the robot locations enabling the
last edge in the prefix part of a restricted accepting run also
enable the first edge in the suffix part. As a result, we can
find the prefix and suffix parts of a restricted accepting run
separately. Otherwise, the progress in the NBA 4, may get
stuck since these two edge labels need to be satisfied at two

consecutive time instants, similar to conditions [(d)] and
Also, as the suffix part of a restricted accepting run is a
loop, robots need to return to their initial locations in the
suffix part after executing the suffix part once. The relation
¥ (Upriors Vaccept) == v(vgrior,vaccept) requires that the initial
locations in the suffix part of a restricted accepting run enable
the edge (vr’)rior, Vaccept)» Which ensures that the robots can travel
back to the initial locations in the suffix part and, as a result,
activate the transition in A4 back to the vertex vaccep: that
allows to repeat the suffix part p*. Finally, we make the
following assumption on the structure of the NBA A,.

Assumption 3.9: (Existence of restricted accepting runs)
The set of restricted accepting runs is non-empty.

We note that the sets of restricted accepting runs for
tasks and satisfy Assumption [3.9] Common robotic
tasks, such as sequencing and coverage, have NBAs that
contain restricted accepting runs. However, there is also a
small subclass of LTL where the “next” operator directly
precedes an atomic proposition that violates this assumption.
For instance, Q(wf% A waé) requires a second robot to visit
region /3 immediately after the first robot reaches ¢, which
does not allow for any physical time between the completion
of the two consecutive subtasks. On the other hand, the LTL
formula O(ﬂfi A Q(Trfil/hrg’l)) satisfies the assumption.

3) Robot paths: The definition of restricted accepting runs
is based entirely on the structure of the NBA and logical im-
plication relations. However, Definition @] does not describe
how to characterize robot paths that induce restricted accepting
runs. Next, we discuss conditions under which robot paths
satisfy restricted accepting runs. We call such paths satisfying
paths and we assume such satisfying paths exist.

Definition 3.10: (Satisfying paths of restricted accepting
runs) Given a team of n robots and a valid specification
¢ € LTLX, a robot path 7 is a satisfying path that induces
a restricted accepting run, if the following conditions hold:

(a) If a vertex label is satisfied by the path 7, it is always
satisfied by the same clause that is always satisfied by the
same fleet of robots;

(b) If a clause in an edge label is satisfied by the path 7, then
a clause in the end vertex label is also satisfied. Moreover,
the fleet of robots satisfying the positive subformula of the
clause in the end vertex label is the same as the fleet of
robots satisfying the positive subformula of the clause in the
corresponding edge label;

(c) Robot locations enabling the edges (vaccepl,vnext) and
(Ul/)rior, vaccepl) in the suffix part of a restricted accepting run are
identical to robot locations enabling the edge (Vprior; Vaccept) in
the prefix part.

Definition is closely related to the definition of a
restricted accepting run. Specifically, condition [(a)] in Defini-
tion [3.10] requires that once a fleet of robots satisfies a vertex
label in a restricted accepting run, then these robots remain
idle during the next time instant so that the same clause in
this vertex label is still satisfied. This satisfies condition [(a) in
Definition [3.8] Furthermore, condition [(b)] in Definition [3.10]
requires that once a fleet of robots satisfies an edge label in a
restricted accepting run, then these robots remain idle during

the next time instant so that the clause in the end vertex label
that is implied by the clause that is satisfied in the edge label
is also satisfied. This satisfies condition [(d)] in Definition [3.8]

Finally, condition in Definition [3.10] requires that the
robot locations enabling the edge (Vprior; Vaccept) in the prefix
part of a restricted accepting run coincide with the initial
locations of the robots that enable the edge (Ulgrior? Uaccept) 10 the
suffix part of the restricted accepting run, as per condition [(f)]
in Definition [3.8] Therefore, condition [(c)] in Definition [3.10]
requires that the robots travel along a loop so that the suffix
part of the restricted accepting run is executed indefinitely. In
what follows, we make the following assumption.

Assumption 3.11: (Existence of paths) Robot paths exist
that satisfy the restricted accepting runs in the NBA Ay.

E. Outline of the proposed method

An overview of our proposed method is shown in Alg.
which first finds prefix paths and then suffix paths. The process
of finding prefix or suffix paths consists of relaxation and
correction stages. Specifically, during the relaxation stage, we
ignore the negative literals in the NBA 44 and formulate
a MILP to allocate subtasks to robots and determine time-
stamped robot waypoints that satisfy the task assignment. To
this end, we first prune the NBA A, by deleting infeasible
transitions and then relax it by removing negative subformulas
so that transitions in the relaxed NBA are solely satisfied by
robots that meet at certain regions [line [I]}; see Section
The idea to temporarily remove negative literals from the NBA
is motivated by “lazy collision checking” methods in robotics
and allows to simplify the planning problem as the constraints
are not considered during planning and are only checked
during execution, when needed. Then, since by condition @]
in Definition restricted accepting runs contain only one
initial vertex and one accepting vertex, for every sorted pair of
initial and accepting vertices by length in the relaxed NBA, we
extract a sub-NBA of smaller size [line [2]; see Section
where Agubtask (Vinit, Vaccept) 1S the sub-NBA including only
initial vertex wjpji, accept VertexX Vaccepe and other intermediate
vertices. The sub-NBAs are used to extract subtasks and
temporal orders between them captured by a set of posets
([lines 3}4]l, see Section [[V-C)), and construct routing graphs,
one for each poset, that capture the regions that the robots need
to visit and the temporal order of the visits so that the subtasks
extracted from the sub-NBAs are satisfied; see Section
Finally, given the routing graph corresponding to each poset
we formulate a MILP inspired by the vehicle routing problem
to obtain a high-level task allocation plan along with time-
stamped waypoints that the robots need to visit to satisfy
the task assignment [lines [G}{7]]; see Section During the
correction stage, we introduce the negative literals back into
the NBA and formulate a collection of generalized multi-robot
path planning problems, one for each poset, to design low-level
executable robot paths that satisfy the original specification
([line [8]l, see Section [V-C). Viewing the final states of the
prefix paths as the initial states, a similar process is conducted
for the sub-NBA Aqyptask (Vaccept Vaceept) to find the suffix paths.
Alg. [can terminate after a specific number of paths is
found or all possible alternatives are explored. Under the mild

Algorithm 1: Algorithm for LTL-MRTA

1 Prune and relax the NBA ;
2 foreach sorted sub-NBA Aqubtask (Vinits Vaceept) d0

5 > Compute the prefix path
3 Prune the sub-NBA Asub(ask(vinih Uaccep[)?
4 Infer the set of posets { Py }:
5 foreach sorted poset Py do
6 Build the routing graph ;
7 Formulate MILP to get prefix high-level plans ;
8 Formulate generalized multi-robot path planning to get prefix
low-level paths ;
; > Compute the suffix path
9 Prune the sub-NBA Asubtask(vacceph ’Uaccepl);
10 Infer the set of posets { Pur};
1 foreach sorted poset Py do
12 Build the routing graph;
13 Formulate MILP to get suffix high-level plans;
14 Formulate generalized multi-robot path planning to get suffix
low-level paths;

assumptions discussed in Section completeness of our
proposed method is shown in Theorem [6.8]in Section

Remark 3.12: We note that Assumption [3.11] on the exis-
tence of satisfying paths is only a sufficient condition that
needs to be satisfied to show completeness of our proposed
method, as shown in the theoretical analysis of Section
The robot path returned by our method may not be a satisfying
path, although it still satisfies the specification ¢.

IV. EXTRACTION OF SUBTASKS FROM THE NBA AND
INFERRING THEIR TEMPORAL ORDER

In this section, we first prune and relax the NBA A,
by removing infeasible transitions and negative literals. As
discussed before, this step is motivated by “lazy collision
checking” methods in robotics and allows to simplify the
planning problem by checking constraint satisfaction during
the execution of the plans rather than their synthesis. Then,
we extract sub-NBAs from the relaxed NBA and use these
sub-NBAs to obtain sequences of subtasks and a temporal
order between them that need to be satisfied so that the global
specification is satisfied.

A. Pruning and relaxation of the NBA

To prune infeasible transitions from the NBA Ay, we first
delete all edges labeled with L, as they cannot be enabled.
We also delete vertices and edges in A4 that do not belong
to restricted accepting runs, as defined in Definition [3.§]
Specifically, we delete all vertices without self-loops except
for the initial and accepting vertices, as per condition
in Definition [3.8] Furthermore, for every vertex other than
the accepting vertex, we delete all its incoming edges with
edge labels that do not strongly imply its vertex label, as per
condition [(d)]in Definition [3.8] Finally, we delete every vertex,
except for the initial vertex, that cannot be reached by other
vertices. We note that these pruning steps do not compromise
any feasible solution to Problem [I] that induces a restricted
accepting run in Ag, as shown in Lemma [6.2] in Section [VI}

We denote by A; the resulting pruned NBA. Given the
pruned NBA A; , we further relax it by replacing each negative
literal in vertex or edge labels with T. Let A.x denote the
relaxed NBA. Note that, when the specification ¢ does not
involve negative atomic propositions, we have A.x = .A;.
Furthermore, Lemma [6.3] states that the language accepted
by A, is included in the language accepted by Areiax, SO
this relaxation step does not remove feasible solutions to

() Apelax for task (i)

(b) Aperax for task (ii)

Fig. 4. The relaxed NBA Ap.x for tasks [()] and

Problem E} In other words, A, iS an over-approximation
of A;. However, a solution to Problem |1|based on Aej,x may
not satisfy the specification ¢. Therefore, the correction stage
is necessary in order to introduce the negative literals back
in the NBA and modify the solution obtained from A, in
order to satisfy ¢. Note that A; and Aax are sub-NBAs of
Ay in terms of vertices and edges. Thus, labels and runs in
A; and Ar.x can be mapped to labels and runs in Ag. For
instance, for an edge label v in Aj.x, We denote by -y, the
corresponding label in A, (including negative literals).
Example 1: continued (Pruning and relaxation of the NBA
Ay) The pruned NBA A for the task |(i)| is the same as the
original NBA in Fig. The relaxed NBA A.x is shown
in Fig. The pruned NBA A; for the task is the
same as the relaxed NBA A, 1n Fig. f(b)] Particularly,
A, is obtained from Ay in Fig. by removing edges
(Ul7 Uinil)v (U2a Uinil)v (’03, Uinit) and replacing ’Y(Uinit) with L.

B. Extraction of sub-NBA Agprask from Ayerax

In this section, we extract multiple sub-NBAs from the
relaxed NBA ALej.x, one for every pair of initial and accepting
vertices in Aax. Then, in Section [V-C| we determine the
temporal order among subtasks in every sub-NBA.

1) Sorting the pairs of initial and accepting vertices by path
length: As required by condition in Definition every
restricted accepting run in A.x contains one pair of initial
and accepting vertices. In what follows, we sort all pairs of
initial and accepting vertices in Ay« in an ascending order so
that the pair of initial and accepting vertices connected by a
restricted accepting run with the shortest length appears first.
Then in Section we extract a sub-NBA from A, for
each pair in this ascending order. Intuitively, the sub-NBAs
corresponding to restricted accepting runs of shorter length
generally will contain fewer subtasks to be completed.

a) Computation of the shortest simple prefix path: Given
a pair of an initial vertex vy and an accepting vertex Uaccept
in Ajax, We first compute the shortest simple path from vg
tO0 Vaecept in terms of the number of edges/subtasks, where
a simple path does not contain any repeating vertices, as
per condition [(a)] in Definition [3.8] that excludes cycles from
restricted accepting runs. This step corresponds to the prefix
part of a restricted accepting run. To this end, we first remove
all other initial vertices and accepting vertices from Aepy.
This will not affect the restricted accepting runs in Apepx
associated with the pair vy and Vaecepr due to condition @] in
Definition [3.8] Then, depending on whether the initial vertex

v has a self-loop, we proceed as follows.

(1) If vy does not have a self-loop, i.e., v(vo) = L: We
remove all outgoing edges vy in Aa.x With label +, if the
initial robot locations do not satisfy the corresponding edge
label v (including the negative literals) in .A4. We emphasize
that we need to check satisfaction of v, in the NBA A instead
of satisfaction of v in the relaxed NBA A, since if initial
robot locations cannot enable an edge starting from vo in Ay,
there is no reason to consider this edge in any NBA.

(2) If v has a self-loop, i.e., v(vg) # L: We check whether
the initial robot locations satisfy 7,(vo) in the NBA A,. If
yes, we do nothing; otherwise, we proceed as in case[(D)]in this
part and remove the self-loop of vy as well as all its outgoing
edges in A,y if the initial robot locations do not satisfy the
corresponding edge label 74 in Ag.

Next, the shortest simple path connecting vg and vaccept €an
be found using Dijkstra’s algorithm. Note that if a vertex is
both an initial and accepting vertex, we treat it once as the
initial vertex and once as the accepting vertex, although it
appears twice in the shortest simple path.

b) Computation of the shortest simple suffix cycle: Next,
we compute the shortest simple cycle around vaccept in Arelaxs
where repeating vertices only appear at the beginning and at
the end of the simple cycle. This step corresponds to the suffix
part of a restricted accepting run, which is conducted in the
original NBA Areiax. If Vaceept i Aretax has a self-loop, then
the length of the shortest simple cycle is 0. Otherwise, similar
to steps in Section [a)| used to find the shortest simple prefix
path, we first remove all other accepting vertices from Ajejax
and then remove all initial vertices (including vg) if they do
no have self-loops. In this way, the only vertex that does not
have a self-loop is the accepting vertex Vaccept. This will not
affect those restricted accepting runs that are related to vy and
Vaccept due to conditions and [(c)| in Definition

Finally, the length associated with the pair vy and Vyccept 18
equal to the total length of the shortest simple prefix path and
the shortest simple suffix cycle connecting these vertices in
Arelax- By default, if no simple path or cycle exists for the pair
v and vuecept, the length is infinite, which means there is no
restricted accepting run for this pair. We repeat this process for
all pairs of initial and accepting vertices in A,x and sort them
in ascending order in terms of the total length. As discussed
before, we plan first for pairs with shorter length since they
contain fewer subtasks to be completed.

2) Extraction of the sub-NBA Agpusk: For every pair of
vertices v and Vaceept i Arelax connected by a simple path of
finite total length in the above ascending order, our goal is
to determine time-stamped task allocation plans for all robots
that induce the simple prefix path and simple suffix cycle in
Apelax connecting vy and vgeeepe. To do this, we extract one
sub-NBA from the NBA A..x that we can use to construct
the prefix part of the plan and one that we can use to construct
the suffix part of the plan, respectively. Here, we discuss the
sub-NBA for the prefix part. The sub-NBA for the suffix part
is similar and is discussed in Appendix A-C in [40].

Given the pair of vertices vy and Vaccept, WE construct a
prefix sub-NBA Agpesk by the following three steps. First,
we follow exactly the same steps in Section [a)] that computes

(a) Asublask for task (i)

(b) Asublask for
task (ii)

Fig. 5. Sub-NBA Agpsk for the prefix part of tasks[(D]and [(iD)]in Example[T]
obtained from the NBA Ayjax in Fig. [F

the shortest simple prefix path to prune the NBA Aj.j.x. Next,
we remove all outgoing edges from Vaccept if Vaccept 7 V0s
because we focus on the prefix part. Finally, let Vs denote the
set that contains all remaining vertices in A, that belong
to some path connecting vy and Vaccept. Then, we construct a
sub-NBA Agpask = (Vs, &) from A that includes all edges
that connect the vertices in V,. The sub-NBA A psk contains
prefix parts of all restricted accepting runs associated with the
pair vg and vyecept, as shown in Lemma

Example 1: continued (Sub-NBA Agpusk) The sub-NBA
Agubask for the prefix parts of plans associated with tasks
and [(iD)] are shown in Fig. [5] For task[(D} given the pair vipi and
v in the relaxed NBA Ak in Fig. (a)l the total length is
340 =3 (edges (Vinit, v3), (Vinit, V4), (Vinit, v5) were removed
since vy does not have a self-loop and all robots initially
located inside regions £y and ¢; do not satisfy their labels; see
Fig.[T). The NBA Agbiask, shown in Fig. [5(a)]is obtained by re-
moving edges (Vinit, v3), (Vinit, V4), (Vinit, v5), (vs,3), (5, V6)
and vertex vs from A.. For task given the pair v
and vy, there is no cycle leading back to v, so the total
length is infinite and there is no corresponding Sub-NBA A\¢jax.
The total length for the pair viy; and vs is 2 + 2 = 4. The
NBA Agupiask i shown in Fig. where edges (vjni, v1) and
(v1,v2) are removed since vy, does not have a self-loop and
initial robot locations do not satisfy their labels.

Example 1: continued (Subtasks in Agpsk) The sub-NBA
Asubtask 18 composed of subtasks that need to be satisfied in
specific orders to reach the accepting vertex. For instance, the
path vy, v1, V4,03, v in Fig. requires that first (1,2)
visits the control room £4, then (2,1) visit the office building
{5 and finally the same two robots of type 1 drop off the mail
at the delivery site ¢3. By definition of task the temporal
order between these subtasks specifies that the time when
(1,2) visits the control room ¢ is independent from the time
when (2, 1) pick up the mail at the building ¢, and that (1, 2)
visiting ¢4 and (2,1) visiting ¢5 should occur prior to (2,1)
visiting the delivery site /.

3) Pruning the sub-NBA Agpsk: Observe that the sub-
NBA Agpwsk in Fig. still constitutes a large portion
of Aplax in Fig. which is common in practice, since
there are typically many more edges than vertices in Aejax.
However, some edges/subtasks are “redundant” in that they

can be decomposed into more elementary edges/subtasks.
Therefore, in what follows, we further prune the NBA Agypeask
by removing such redundant edges.

Recall Definition [3.6] where subtasks are defined by their
edge labels and starting vertex labels. Next we define the
notion of equivalent subtasks.

Definition 4.1: (Equivalent subtasks) Subtasks (v1,v2) and
(vi,v4) in an NBA A are equivalent, denoted by (v1,vs) ~
(vh, 04, if Y(v1) = 7(0}), Y(v1,v2) = (v}, v4) and they are
not in the same path that connects the same pair of initial and
accepting vertices.

The last condition in Definition is necessary since two
subtasks in the same path mark different progress towards
completing a task, even if they have identical labels. Recall
that in task [D)] in Example [I] certain regions can be visited
in parallel. To capture the parallel visits, we define the fol-
lowing two properties over vertices in Agypask, namely, the
independent diamond (ID) property adapted from [45] and the
sequential triangle (ST) property over vertices; see also Fig. [6]

Definition 4.2: (Independent diamond property) Given four
different vertices vi,v2,vs, vy in the NBA Agyprask, WE say
that these four vertices satisfy the ID property if (a) y(v1) =

Y(v2) = v(va); (b) v1 L p va Lo vss () V1 g vy Lp

vs; (d) v; 25 5 vg; (e) Yo (v3) = T if U3 = Vaccept-
Intuitively, if vertices wvy,vs,v3, and vy in Agpask satisfy
the ID property (see Fig. [6(a)), then conditions (a)-(c) in
Definition imply that the subtasks (vi,v2) ~ (vg,v3)
and (vy,v4) ~ (vg,v3) in Agpusk are equivalent, while
conditions (b)-(d) in Definition [4.2] state that their order is
arbitrary, i.e., one can proceed the other or they can occur
simultaneously. We refer to (vy,vs3) as the composite subtask
and (vi,vs), (v1,v4) as the elementary subtasks. Although
both can lead to vertex v3, composite subtasks are “redundant”,
since elementary subtasks can be executed independently
and, therefore, their labels are easier to satisfy, compared to
composite tasks that need to be executed simultaneously and,
therefore, more conditions need to hold so that their labels
are satisfied. Note that we conduct the T-check in condition
(e) in Definition 4.2) on the NBA Ay so that condition [(f)] in
Definition 3.8]is satisfied which means that the set of restricted
accepting runs is not affected if the edge (v, v3) is removed.
This result is formally shown in Lemma [6.5] In words, if
Yo(v3) # T with v3 = Vaeeept» and if a restricted accept-
ing run traverses edges (U1, Vaccept) ANd (Uaccept, Unext) Where
Vaccept 7 Unext» then condition [(f)] in Definition states that
7¢(U17vaccepl) - ’Yda(vaccepbvnexl)' However ’7¢(U2avaccept)
and Y (V4, Vaccept) May not imply e (Vaccepts Unext) since they
are subformulas of ~4(v1, Vaccepr). Therefore, removing the
composite edge (v1, vaccep[) risks emptying the set of restricted
accepting runs.

Definition 4.3: (Sequential triangle property) Given three
different vertices wq,v9,v3 in the NBA Agpusk, We say
that these three/vertices V1, Va2, Us /satisfy the ST property if
(v g vy Lop vs; (b) v1 %B vg; (¢) vg(vs) = T if
U3 = Vaccept-

If vertices vy, vg, and vs in Agpask satisfy the ST property (see

[v(v2)]

@,

(b) ST property

[v(v3)]
(a) ID property

7(v3)]

Fig. 6. Independent diamond and sequential triangle properties.

Equivalent subtasks:
(Vinit, v1),

(v1,v4) ~ (v2,v3),
(v1,v2) ~ (v4,v3),
(v3,v6)

Mapping function:
J1(Vinie, v1) = 1,
fi(vi,va) = fi(ve,v3)
fi(vi,v2) = fi(va,v3)
f1(vs,v) = 4.

Integer sequences:
I ={(1,2,3,4),(1,3,2,4)}

2,
3,

Poset:
Py ={1<p,2,1<p, 3,1<p 4,2<p, 4,3<p, 4}

(a) AST.IbIaSk for (b) Subtasks and poset

task (i)

Fig. 7.

Fig. [6(b)), then conditions (a) and (b) in Definition state
that subtask (v, v2) should be satisfied no later than (vy, v3).
Note that if vertices v1, vo, v3, vy satisfy the ID property, then
v1, V2, v3 and vy, v4,v3 satisfy the ST property. Using these
two properties, we remove all edges from Agpsk associated
with composite subtasks and denote by A_, .. the resulting
pruned Agpusk- A composite subtask can be an elementary
subtask of another composite subtask at a higher layer. Thus,
removing composite subtasks is vital for reducing the size of
Agubask- Similar to pruning Ay to get A;, the feasibility of
Problem |1|is not compromised by pruning composite subtasks
from the NBA Agyprask, as shown in Lemma [6.5]

Example 1: continued (ID and ST properties and the result-
ing NBA A_,) In the NBA Ak for task shown in
Fig. the vertices vy, va, v3, v4 satisfy the ID property and
the vertices v, v3,v6 (74(vs) = T in Fig. satisfy the ST
property. Thus we delete (vy,vs) and (va,vg). The resulting
Abask 1S shown in Fig. The NBA A_, . Of task |(ii)|is
the same as Agpusk Since there are no composite subtasks.

The NBA A_, .. and corresponding subtasks.

C. Inferring the temporal order between subtasks in A,

In this section, we infer the temporal relation between
subtasks in the pruned NBA A_, o = (Vi,&). For this,
we rely on partially ordered sets introduced in Section [[[-B
Specifically, let © denote the set that collects all simple paths
connecting vo and Vaccept in Ay .- We focus on simple paths
since condition [(a)] in Definition excludes cycles. Given a
simple path § € ©, let T(f) denote the set of subtasks in
6. We say that two simple paths ¢; and 6, have the same
set of subtasks if 7(61) = T (62). Then we partition © into
subsets of simple paths that contain the same set of subtasks,

that is, © = U.O. where T (61) = T (02) for all 6;,02 € O,
and 6, # 0. The reason for this partition is that we want to
map simple paths in A_, . to posets, and the set of linear
extensions generated by a poset has the same set of elements.

Given a subset ©. of simple paths in the partition, with a
slight abuse of notation, let 7(©,) denote the set of corre-
sponding subtasks. Let the function f, : T(0.) — [|T(©.)]]
map each subtask to a distinct positive integer. Note that two
different subtasks in two different subsets O, and ©. may
be mapped to the same integer; however, we treat these two
subsets separately. Using f., we can map every path in ©,
to a sequence of integers, denoted by S.. Let I'. collect all
sequences of integers for all paths in ©,, so |O.| = |[¢|.
Moreover, all sequences of integers in I', are permutations of
each other and we denote this base set by X, = [|T(0.)|]-
For every sequence S, € T, let S.[i] denote its i-th entry. We
define a linear order Lx, = (X, <p) such that S.[i] <p Se[j]
if i < j. In other words, the subtask S,[¢] should be completed
prior to S, [j]. Then, let =, collect all linear orders over X, that
can be defined from sequences in I'.. A poset P, = (X, <p,)
containing the maximum number of linear orders in =, can be
found using the algorithm proposed in [42] for the partial cover
problem, where the order represents the precedence relation.
Note that =, may not be identical to =p_, the set of all linear
extensions of P,. Thus, after obtaining poset P,, each of the
remaining linear orders in =, that are not covered by P, are
treated as separate totally ordered sets, that are posets as well.
In this way, we do not discard any posets.

Finally, given a partition {©.} and a corresponding set of
posets { P. }, we sort { P, } lexicographically first in descending
order in terms of the width of posets and then in ascending
order in terms of the height. Recall that the width of a poset is
the cardinality of its maximal antichain, and its height is the
cardinality of its maximal chain; see Section Intuitively,
the wider a poset is, the more temporally independent subtasks
it contains. The shorter a poset is, the fewer subtasks it has. We
consider first wider posets since they impose less restrictions
on the high-level plans compared to shorter posets. Every
linear extension of subtasks in a poset produces a simple path

connecting v and Vaceept 1N Agyp k-

Example 1: continued (Temporal constraints) For task
there are two simple paths in A_; . leading to vg and all have
the same set of four edges, thus, ©1 = {vin, v1, V4, V3, U}
Vinit, V1, V2, V3, Vg }; see Fig The design of equivalent
subtasks, mapping function, integer sequence and the poset are
shown in Fig. The temporal relation implies that subtasks
(v1,v4) and (v1,vq) are independent, which agrees with our
observation. For task the NBA A_, .. in Fig. only
has one path of two subtasks that generates a totally ordered
set where every two subtasks are comparable.

Remark 4.4: 1f the size of sub-NBA A_, . is still large,
leading to large number of simple paths, we can select a fixed
number of simple paths, similar to finding a fixed number of
runs in [28]. This will not severely compromise the diversity
of the selected simple paths since a lot of simple paths are
combinations of the same set of elementary subtasks.

V. DESIGN OF HIGH-LEVEL TASK ALLOCATION PLANS
AND LOW-LEVEL EXECUTABLE PATHS

In this section, we synthesize plans that satisfy the LTL
specification ¢ by first generating a time-stamped task alloca-
tion plan that respects the temporal order between subtasks that
need to be satisfied in order to satisfy the specification, and
then obtaining a low-level executable path that also satisfies the
negative literals that we removed from Ay, in Section
In what follows, we discuss the synthesis of a prefix path;
a similar process is used to synthesize the suffix path in
Appendix A-C in [40]. Specifically, to synthesize high-level
prefix plans, we iterate over the sorted set of posets { Py},
where B is a poset corresponding to a simple prefix path in
Ak and, for every poset in { Py} we formulate a MILP
to assign robots to tasks and determine a high-level plan, i.e.,
a sequence of time-stamped waypoints, that the robots need to
visit to satisfy the subtasks in the corresponding simple path
in A, - Note that, given a poset P € { Py}, every element
in the corresponding base set X p is an integer associated with
an edge/subtask in the NBA A_, .. Since a solution to the
proposed MILP is effectively a linear extension of the poset
P, the corresponding plan sequentially satisfies the vertex
and edge labels of all subtasks in A, ., associated with the
elements in X p. Therefore, this plan produces a simple path
in Ay, .« that connects vy and Vuecepr. To obtain the low-
level executable path, for every subtask in this simple path, we
formulate a generalized multi-path robot planning problem that
considers the negative literals that were removed from Ajej.x
in Section

The proposed MILP is inspired by the vehicle routing
problem (VRP) with temporal constraints [12]. In the VRP,
a fleet of vehicles traverses a given set of customers such that
all vehicles depart from and return to the same depot, and
each customer is visited by exactly one vehicle. Compared
to the VRP with temporal constraints [12], the LTL-MRTA
problem is significantly more complicated. First, robots are not
required to return to their initial locations. Instead, there may
exist robots that need to execute the task forever corresponding
to the “always” LTL operator. Second, there may exist labeled
regions that do not need to be visited at all and others that
need to be visited exactly once, more than once, or infinitely
many times. Finally, visits of regions and visiting times are
subject to logical constraints induced by the NBA A_

subtask *

A. Construction of the prefix routing graph

To formulate the proposed MILP, we first construct a routing
graph G = (Vg,&g), where each vertex represents an initial
robot location or a specific region that is associated with
a specific literal in a specific label of a subtask in Xp.
Each vertex/region in Vg is visited by at most one robot.
Simultaneous visits of multiple vertices in Vg by a fleet of
robots satisfy a literal, a clause, or a label in A_, . The
time of visits reflects the temporal relation among subtasks.
We first construct the vertex set and then the edge set of the
routing graph G. Both constructions consist of four layers that
iterate over the edges, then the labels, then the clauses, and
finally, the literals in A see also Alg.

iubtask ’

Algorithm 2: Construct the routing graph
Input: Poset P

5 > Create the vertex set
1 Create the vertex set Viy; for initial locations ;
H > vertices for labels
for e = (vi,v2) € Xp do
if y(vi,v2) # T then
~
i Cgore‘/rsf)(‘v; ';li:s+ (€7) do
i,j P
| Create 7 vertices ;

if y(vi1) # T, L then

\ Create vertices by following lines E}@
> Create the edge set

2
3
4
5
6
7
8

9 for e = (v1,v2) € Xp do

10 if v(v1,v2) # T then
1 for C)) € cls(y) do
12 for ﬂ.ivjx € lits™ (€p) do

(¢) Vertices of initial robot locations ;
(#i) Vertices of prior subtasks ;
(#i4) Vertices associated with v (v1) ;

16 if y(vi1) # T, L then

17 if S5 = () then

18 | Create edges by following lines ;

19 else if S5 # (then

20 Create edges from vertices associated with subtasks in S5 ;
21 iinP = and Xﬁ‘P # () then

22 Create edges from vertices associated with initial robot

locations ;

1) Construction of the vertex set: The vertex set Vg consists
of three types of vertices, namely, location vertices related to
initial robot locations, literal vertices related to edge labels
in the sub-NBA Abubtdsk, and literal vertices related to vertex
labels in the sub-NBA A_, .. Specifically, we construct the
location vertices as follows.

a) Location vertices associated with initial robot locations:
First we create n vertices, collected in the set an C Vg such
that each vertex points to the initial location s° . of robot
[r,j] € K;,Vj € [m] [line[1} Alg.]2] (see blue dots in Fig. [3).

To obtain the set of literal vertices in Vg, we iterate over
subtasks in Xp. Given a subtask e = (v1,v2) € Xp, we
construct vertices for the edge label v(v1, v2) and the starting
vertex label (vy), if they are neither T nor L. Specifically,
we take the following steps.

b) Literal vertices associated with edge labels: 1If
v(v1,v2) # T, we operate on y(v1,v2) =\ ,cp /\qegp k’X
starting by iterating over the clauses CJ € cls(y) in the
label, and then over the literals in each clause CV [lines
@ Alg. [2]. The literal 7 k X € lits™ (C;) implies that at least

1,7), i.e., ¢ robots of type 7, should visit the target region ¢y,
simultaneously. Hence, we create ¢ vertices in Vg all associated
with region ¢. If (i, j) visit these i vertices simultaneously,
one robot per vertex, then Trk’JX is true. Note that if x # 0,
the robots visiting these ¢ vertices should be the same as those
visiting another 7 vertices associated with another literal with
the same nonzero connector, which is ensured by the MILP
formulation; see the red, yellow, and green dots in Fig.

c) Literal vertices associated with starting vertex labels:
After vertices in Vg associated with the edge label v(vy,v2)
of subtask e have been constructed, vertices in Vg associated
with the starting vertex label y(v;) can be constructed in the
same manner if 7(v;) is neither T nor L [lines [78] Alg. 2.

Repeating steps [b)] and [c)] for all subtasks in Xp completes
the construction of the vertex set Vg. Note that each vertex
in Vg \ Vini is associated with a literal of a certain subtask in
X p. Also, each literal of a certain subtask in X p is associated

i@

Fig. 8. Routing graph G for task 5(1) 15 5871 and 52,1 are initial locations
of three robots of type 1 and 5(1) 5 and s , are initial locations of two robots
of type 2 (see case . Red dots7 é% and Zg correspond to the edge label Tl'gi
of element 3, i.e., edge (vi,v2) in Xp; see Fig. Yellow dots Eé,[%
correspond to the edge label wg’% of element 4, and green dot Z}l corresponds
to the edge label 7r§"2 of element 2 (see case . No dots correspond to vertex
labels since all vertex labels are either T or L. The edges from E% to Eé and
from Z% to @ are due to 3 <p 4.

with one or more vertices in Vg \ Vini, and the literal specifies
the region and the robot type associated with these vertices.
To capture this correspondence, let ./\/lg : Vo \ Vit — Xp
and MY : Vg \ Vinie = [map a vertex in Vg \ Vini to its
associated subtask and literal, respectively, where [],.. is the
cartesian product Xp x {0,1} xP x Q,,, and 0, 1 represent the
label type, O for vertex label and 1 for edge label. Furthermore,
let MUt T]c — 2Y9 and MSE : T, — 2Y¢ map a literal
and clause to the associated vertices in G, respectively, where
[L. is the cartesian product X p x {0,1} x P. We also define
MY Vg — L and MY : Vg — {K;} that map a vertex in
Vg to its associated region and robot type. Finally, if x # 0,
we define MX : N+ — 257401} to map y to all labels in
Xp that have literals with the same connector Y.

Example 1: continued (Mappings for task (i)) The map-
pings in Fig. [8| associated with the vertex ¢} are: MY ({3) =
(v1,v2) = 3 and MY (€3) = ((v1,v2),1,1,1) since the vertex
¢} corresponds to the first literal ’/Tgi of the first clause of
the edge label of subtask (vi,v2) in Xp; see also Fig.
MFE(ly) = Ly and MY (£3) = Ky since the literal my))
requires two robots of type 1 to visit region /5.

Furthermore, the literal/clause-to-vertex mappings are:
M:\;}iz(((vla v2),1,1,1)) = /\/Clﬁs}ls(((ulv v2),1,1)) = ggév E%}’
MV (((v1,v4), 1,1, 1)) = MV (((’l}17’l)4), 1L1)) = {€4} simce
the literal 7 ,, the first literal of the first clause of the edge
label of subtask (vq,v4), requires one robot to visit region
{y. Finally, the connector-to-label mapping is: MX(1) =
{((v1,v2),1), ((vs,v6),1)} since the connector 1 appears in
the edge label of subtasks (v1,v2) and (vs, vg).

2) Construction of the edge set: The edges in G respect
the partial order among subtasks captured by the poset P. We
construct the edge set £g by following a similar procedure as
that used to construct the vertex set Vg. Specifically, we iterate
over the elements in Xp. For every subtask e = (vy,v3) €
Xp, if v(v1,v3) # T, we first operate on the edge label
Y(1,v2) = Vpep Njeo, wﬁgx starting by iterating over the
clauses C) € cls(7), and then over the literals in each clause

Cy [lines Alg. . Specifically, recall from Section

that the literal 7ri< e lits™ (C)) corresponds to 7 vertices in

Vg that are associated with region ¢, that should be visited by
1 robots. In what follows, we identify three types of leaving
vertices in Vg from where ¢ robots can depart to reach these

1 vertices that satisfy literal 7rf]x

a) Location vertices: The location vertices in Vi, associ-
ated with robots of type j are leaving vertices. We add an edge
from all initial vertices to every vertex associated with literal
wf JX (blue edges in Fig. ﬁ) Intuitively, robots depart from
initial locations to undertake certain subtasks. These edges are
associated with a weight T equal to the shortest travel time
from the initial location to /5 and another weight d equal to
the smallest traveling cost between the initial location and /.

b) Leaving vertices associated with prior subtasks: Let
X< b X< ~ and X ﬁp denote the sets that collect subtasks
in Xp that are smaller than, covered by, and incomparable
to subtask e, respectively (see Section . In words, X¢
contains subtasks in X p that should be completed prior to e,
X&, € X2 contains subtasks in X¢ | that can be completed
right before e, and X ‘TP contains subtasks independent from
e. To find leaving vertices, we iterate over Sf = X¢& - U X ﬁp
that includes all subtasks that can be completed prior to e,
respecting the partial order between subtasks. Given a subtask
e = (vi,vh) € 5%, if its edge label ~'(v},v}) # T, we
iterate over all clauses in 7 and thgn over all literals in each
clause. Specially, given a clause C;, € cls(v’), for any literal
ﬂf,i’]-)/(/ € Iits+(C;,/), if j/ = j, then literal vertices in Vg
associated with this literal are leaving vertices. If further i’ = 4,
we randomly create ¢ one-to-one edges starting from these
1 vertices and ending at the ¢ vertices associated with WfJX
(see the orange edges in Fig. [§). Because there are exactly
1 robots of type j, it suffices to build ¢ one-to-one edges.
Furthermore, if xy = x’ # 0, then literals waX and Wf,:’j)/(/ must
have the same number of vertices. Building i one-to-one edges
can guarantee that the same ¢ robots of type j satisfy these
two literals. Otherwise, if i’ # ¢, we add 7 x 7’ edges to /€g/
by creating an edge from any vertex associated with Wf,j]?,‘
to any vertex of ﬂfJX Finally, since each region may span
multiple cells, the weights T and d of these edges are set as
the shortest travel time and lowest traveling cost from £y to {j.
After creating edges associated with the edge label v/ (v}, v5)
of €/, we identify leaving vertices among literal vertices in Vg
associated with the starting vertex label v(v}) of e’ and build
edges in the same manner.

¢) Leaving vertices associated with ~y(vy) of e: When the
iteration over SY{ is completed, we identify leaving vertices
among literal vertices associated with the starting vertex label
~v(v1) of the current subtask e by following the procedure in
case |b)| for the prior subtasks. This is because -y(v1) becomes
true before y(vq, va).

So far we have constructed three types of leaving vertices
corresponding to the literal ﬂf jX in lits™ (Cy)) of the edge label
~(v1,v2) [lines Alg.[2]l. We continue constructing leav-
ing vertices for all other literals in lits™ (Cy) [line 12} Alg.
and clauses in cls(vy) [line Alg. 2. After constructing all
edges pointing to vertices associated with literals in the edge
label y(v1,v2) of the current subtask e [line Alg. 2], we
construct edges pointing to vertices associated with literals in
the starting vertex label (v;), by identifying leaving vertices
among location vertices and literal vertices associated with
prior subtasks. Specifically, let S5 = X¢ U X ﬁp be the set

that collects all subtasks that can occur immediately prior to
subtask e. The satisfaction of edge labels of subtasks in S§
can directly lead to the starting vertex v; of e. We consider
the following cases.

(1) S5 = 0: 1In this case, no subtask can be completed
before subtask e, i.e., the subtask e should be the first one
among all in Xp to be completed. Thus, v; is identical to the
initial vertex vg. In this case, we only identify location vertices
as leaving vertices, as in case [a)| [lines [I8] Alg. [2]].

(2) S5 # (0: We identify leaving vertices associated with
prior subtasks in S§. Given a subtask ¢/ = (v}, v}) € S5,
we find all clauses Cg/l € cls(vy’) in the edge label ~" of ¢
such that, for the considered clause C € cls() in the starting
vertex label of subtask e, its corresponding clause (C))g in

A, is the subformula of their corresponding clauses (C;’,/)¢ in

Ag. Next, for each literal wf e lits™ (C)) we create i one-
to-one edges, starting from those ¢ vertices associated with the
counterpart of literal j X in the found clause C7 6 cls and

ending at the ¢ vertices associated with 7r; ’X [hnes
We create such one-to-one edges based on cond1t10n [Q] n
Definition [3.8] and condition [(b)] in Definition [3.10] That is, the
edge label strongly implies its end vertex label, the satisfied
clause in the edge label implies the satisfied clause in the end
vertex label, and the fleet of robots satisfying the clause in the
vertex label belongs to the fleet of robots satisfying the clause
in the incoming edge label. This is also the reason why we
consider prior subtasks in S5 rather than S{ as in case [b)]
(3) X, = 0 and Xﬁp # (): 1In this case, the subtask
e can be the first one among all to be completed. If so, its
starting vertex label (v) should be satisfied at the beginning.
However, robots cannot depart from leaving vertices that are
literal vertices (see case [(2)), because these edges are enabled
after subtask e. Therefore, for the vertex label ~(v1), we
additionally identify leaving vertices pointing to initial robot
locations, as in case [a)] [lines Alg. 2Jl. Note that, if
X¢, # 0, there are no leaving vertices associated with initial
locations since there exists a subtask that should be completed
before e and, therefore, subtask e can not be the first one.
When the iteration over all subtasks in Xp is over, we finish
the construction of the edge set & [line [9] Alg. [2].

B. Construction of the robot prefix plans

Given the routing graph constructed in Section the
proposed MILP contains five types of constraints includ-
ing routing constraints, scheduling constraints, logical con-
straints, temporal constraints, and transition constraints; see
Appendix A-B in [40]. The feasibility of the MILP and the
properties of the resulting solutions are analyzed in Lem-
mas [6.6] and Given the solution to the MILP, we first
define a time axis that includes the sorted completion times of
all subtasks in X p. This time axis produces a linear extension
of the poset P and the plan generated by this linear extension
satisfies the vertex and edge labels in a given simple path in
A bask- Next, we extract a time-stamped task allocation plan
for each robot that is augmented with the completion time
of each subtask, and can be used to generate low-level paths
satisfying the specification ¢.

1) Time axis: The progress made in A, . is directly
linked to the satisfaction of edge labels which, by condition
in Definition [3.8] implies the satisfaction of their end vertex
labels, excluding vaccepi. Therefore, we collect the completion
times of all subtasks in X p (the time when edges are enabled)
and sort them in an ascending order to form a single increasing
time axis, denoted by ¢. We note that there are no identical time
instants in the time axis since, by construction, the solution to
the MILP produces a simple path in A_, . and subtasks in
any simple path are completed at different times.

2) High-level robot plans: Next we extract a high-level plan
for each robot, which is a sequence of waypoints that the
robots need to visit to complete the subtasks in X p along with
the time instants of these visits. Specifically, for each robot
[, 7], let p, ; denote its corresponding high-level plan and let
t,; denote its timeline. Consider also a vertex vy € Vi in
the routing graph G that is associated with the initial location
of robot [r, j] and let v be the vertex that robot r traverses
to. Note that robot 7 can only travel along one outgoing edge
of vj. Note also that each vertex in the routing graph G is
associated with a label captured in the mapping M. If the
label associated with v} is a vertex label, then we proceed
to the next vertex v5 that robot r reaches from o7, until
a vertex v* € Vg associated with an edge label is found.
Then, the region associated with this vertex v*, captured by
the mapping MY (v*), constitutes the first waypoint robot
r needs to visit to complete a subtask. We add this region
MY (v*) to the plan p, ;. Next, the corresponding visit time
indicates the completion time of the associated subtask that is
captured by the mapping MY (v*). We add this time instance
to timeline ¢, ;. Since each time instant on the time axis
t corresponds to the completion of one subtask, this visit
time in ¢, ; corresponds to the time instant on t that the
subtask MY (v*) is completed. Continuing this process, we
can construct for robot [r, j] a sequence of waypoints and the
corresponding timeline whose time instants appear on the time
axis £. Given this high-level plan {p, ;}, we can design low-
level executable paths that reconsider the negative literals that
were originally removed from the NBA Ajejax-

Example 1: continued (Time-stamped task allocation plan)
After solving the MILP for the workspace in Fig. the
high-level plans and the associated timelines for robots are as
follows: po1 = p3 1 = {l2,03},t21 = t31 = {6,16},p22 =
{l4}, ta2 = {10}. That is, robots [2,1] and [3,1] visit the
office building ¢» at time instant 6, then robot [2,2] visits
the control room ¢, at time instant 10, and finally robots
[2,1] and [3,1] visit the delivery site 3 at time instant 16.
The remaining robots remain idle. The induced simple path
in A pag i Flg n 1S Vinit, V1, V2, U3, Vg. The associated
time axis is £ = {0,6, 10,16}, one time instant per subtask.
In words, the subtask (vm,t, v1) is completed at time instant O
and the subtask (v1, v2) is completed at time instant 6, which
corresponds to the event that robots [2,1] and [3,1] visit the
office building /5.

C. Design of low-level prefix paths

In this section we discuss the correction stage that re-
introduces the negative literals to the NBA and corrects the

high-level plans designed in Section (if needed) so that
they satisfy the specification ¢. To this end, we first find the
simple path in the NBA A_,.. connecting vg and Vuccept Using
the time axis and the time-stamped task allocation plan. To
satisfy the specification ¢, for every subtask in the simple
path, we formulate a generalized multi-robot path planning
(GMRPP) problem. Each GMRPP is essentially a general-
ization of the multi-robot point-to-point navigation problem,
whose goal is to determine a collection of executable paths that
allow the robots to complete the current subtask (by enabling
the edge label at the end while respecting the starting vertex
en route) and automatically activate the next subtask, since
the satisfaction of the edge label leads to the satisfaction of
the starting vertex of the next subtask. The details can be
found in Appendix B in [40], that also discusses different
implementations of the proposed GMRPP that depend on
whether all or a subset of robots are allowed to move during
the execution of the current subtask, since not all robots are
responsible for the completion of this subtask, and whether
the completion times of subtasks are disjoint or partially
overlapping. Finally, the feasibility of the proposed GMRPP
is analyzed Lemma C.11 in [40].

D. Obtaining the best prefix-suffix path

After obtaining the prefix path corresponding to a poset
Pe {Ppre} for the given pair vp and vyccep, Next we find the
suffix path around vsccep. For this, we can follow a similar
process as this described in Sections to find the
prefix path for poset P € {P,.}, with the difference that now
we treat the accepting Vertex Uuccept as both the initial vertex
vo and the accepting Vertex vaccept. This is because the suffix
path is essentially a loop, i.e., the final locations in the suffix
path are identical to the initial locations in the suffix path,
which are also the final locations in the prefix path.

Specifically, given the pair vy and Vaccep, We solve one
MILP for each poset P’ € {Py} to obtain a correspond-
ing suffix path; these MILPs can be infeasible if there are
no feasible paths that induce simple paths corresponding to
the poset P’. Then, among all suffix paths for all posets
P’ € {P,y} we select the one with the lowest cost. This best
suffix path corresponds to the prefix path generated from a
poset P € { Py} for the given pair vy and vyecep. Combining
this suffix path with the corresponding prefix path we obtain
the best total path associated with the poset P for the given
pair vg and Vaccepr- Then, using cost function (@), we select
the best total path over all posets in {P.} for the given
pair vg and Vuecep. Finally, by iterating over all pairs of
initial and accepting vertices with finite total length, we can
obtain the best total path. We highlight that our method can
terminate anytime once a feasible path is found, but running
the algorithm longer can lead to more optimal feasible paths.
Note also that by iterating over the pairs vg and Vuecepr and
the corresponding posets in the ascending order discussed in
Section [[V-C] it is more likely that the first solutions have
low cost since they involve fewer subtasks that need to be
accomplished, which is validated numerically in Section

Example 1: continued (Low-level paths) When generating
paths for task collision avoidance is considered. Fig. 0]

(@t=6

(b)y t =10

(c)t=18

Fig. 9. Key frames demonstrating the execution of low-level paths that satisfy
task [(D] The initial configuration is shown in Fig. [T} Fig. shows that at
time instant 6, robots [2, 1] and [3, 1] reach the office building ¢2, while robot
[1,2] is on the way to the control room £4. Fig. shows at time instant 10,
robot [1, 2] reaches the control room ¢4 while robots [2,1] and [3, 1] head
towards the delivery site £3. Finally, they reach 3 in Fig. at time instant
18. Robots [1, 1] and [2, 2] remain idle throughout the process.

shows an array of three key frames where different subtasks
are completed. Observe that task |(1)| is completed at time 18,
longer than 16 given by the time-stamped task allocation plan
since the high-level plan uses the shortest travel time between

regions and does not consider collision avoidance.

VI. THEORETICAL ANALYSIS

In this section, we analyze the completeness and soundness
of our method. First we present important lemmas and then
show that, with mild assumptions, our method is complete for
LTLO specifications. We start by providing necessary notation.

A. Notation

Given a NBA A, e.g., Ay, Arelax and Aguprask, we define
by Lg(A) the set of words in L£(A) that can be realized by
robot paths. Recall that we can always map a run in A to
its counterpart in Ag. If A = Ay, then the counterpart of a
run is the run itself. We define by E%(A) the set of words in
Lz(A) such that for any word w € L (A) that induces an
accepting run in A, the counterpart of this accepting run in A
is a restricted accepting run. In words, if A = A, ., and if
a path 7 generates a word w in £% (A, .q) € L2(ALyua)
and w induces a run p in A, ., connecting a pair vg and
Vaccept, then, we can obtain the corresponding run pg in Ag
that is the counterpart of the run pin A_, . . This motivates us
to modify the path 7 that satisfies A_, ., to get another path
that can produce this run pg in Ag. Additionally, let £%(A) C
L% (A) collect those words in £%(.A) that can be generated
by paths that satisfy Assumption [3.11} Next, we consider the
prefix and suffix parts separately. Given a pair of initial and
accepting vertices, vy and Vyccept, let £%U°9U“°°C"‘(A) be the set
that collects finite realizable words that can generate a run in .4
connecting vy and vaecept, and further the corresponding run in
A, satisfies the requirements on the prefix part of a restricted

accepting run (see conditions [(a)l{(d)]| in Definition [3.8).

B. Completeness and soundness

The following proposition states that paths exist that can
induce accepting runs in the pruned sub-NBA A_, ... This
result will be used to show the feasibility of the MILP for the

time-stamped task allocation plan.

Proposition 6.1: (Feasible prefix paths for the sub-NBA
A bask) Given a workspace satisfying Assumption and
a valid specification ¢ € LTLX, if there exists a path
7 = P73« inducing a restricted accepting run p =
ppre[psuf]w = vp,.

’ w
-+ 5 Upriors Vaccept ['Unexta -+ Uprior» Uaccept] m

Ay and this path satisfies Assumption [3.11] then there exists
another path 7 = 7P[7*] such that 7P generates a word
. AP, V0 Vacce —

m ‘CE ’ pl(‘Asubtask) 7& @

To prove Proposition we recall the main steps to
obtain the sub-NBA As_ublask in Sections and and
characterize the relations between the different NBAs; see
Lemmas [6.2}{6.5] The first lemma shows that the pruning steps
in Section do not affect the set of restricted accepting
runs in Ay that can be induced by realizable words.

Lemma 6.2: (Ay and A;) The pruning steps in Sec-
tion satisfy E%(A;) =LY (Ay).

Note that any word in E%(.AQQ induces a restricted accepting
run in Ag. A direct consequence of Lemma is that, any
path generating a word w € E%(A;) satisfies ¢ since the word
w also belongs to E%(Adj). The following lemma shows that
ignoring negative literals expands the set of realizable words
accepted by Ax compared to that of A;.

Lemma 6.3: (A; and Aax) The relaxation stage that
replaces all negative literals with T in Section satisfies
L3(A;) € L (Aniar).

Lemma implies that a word in ﬁ%(Arelax) may not belong
to L% (A). Hence, a path generating a word in L5 (Aselax)
may not satisfy the specification ¢ since AL, ignores the neg-
ative literals. The following two lemmas show that extraction
and pruning of the sub-NBA Agpsk for the prefix part do not
empty the subset of words in £5"""*" (A,) that can be
generated by feasible paths satisfying Assumption [3.11]

Lemma 6.4: (Apelax and Asnask) The extraction of the sub-
NBA Aqps in Section [[V-B2| satisfies £5"° " (Aretan) =
£%7U0‘> Vaccept (.Asub[ask> .

Lemma 6.5: (Aqbask and As_ubgsk)9 The pruning
steps in Section [[V-B3| satisfy L7 "“"(A_ j.q) C
E%’UOW““”‘(Asubtask). Additionally, if there exists a path
7 = 7P« inducing a restricted accepting run in Ay,
and this path satisfies Assumption [3.11} then there exists a
path 7P, modified from 7P, that can generate a word in
A D,V0> Vaccept - : A D,V0> Vaccept -

‘CE ’ " (Asubtask)’ Le., ‘CE ’ " (Asubtask) 7é (Z)

Finally, Lemma [6.6] states that, if the poset P is inferred
from a set of simple paths that includes a simple path associ-
ated with a feasible prefix path, then the MILP associated with
this poset P is feasible; Lemma states that a simple path
in A, .« can be extracted from the solution to the MILP and
discusses the temporal properties associated with this path.

Lemma 6.6: (Feasibility of the prefix MILP) If there exists a
path 7P generating a finite word wP™ € EW’UOWW‘“(subtask)
and the word @ induces a simple path & in Aibask that
belongs to the set of simple paths that generate the poset P,

then the prefix MILP associated with this poset P is feasible.

Lemma 6.7: (Properties of the simple path) If the MILP
for the prefix path associated with the poset P produces a
solution, then a simple path 6§ belonging to the set of simple
paths that generate the poset P, can be extracted from the
sub-NBA A_ Additionally, the following properties hold:

subtask *

(a) The first subtask in the simple path 9 begins at time 0;

(b) For any subtask e € 0, if its starting vertex has a self-
loop, then the completion time of the subtask e is no earlier
than the activation of its starting vertex label, and at most one
time step after the completion of its starting vertex label;

(¢) For any two consecutive subtasks e, ¢’ € é, the latter sub-
task €’ is activated at most one time step after the completion
of the former subtask e.

Property guarantees the initialization of the sequence
of subtasks in 6, property ensures that each subtask
in 6 is correctly executed, and property prevents gaps
when transitioning between consecutive subtasks. Combined
these three properties establish that once the first subtask is
activated at time 0, each subsequent subtask is completed
successfully and inter-subtasks transitions occur seamlessly,
until the completion of the last subtask.

Theorem 6.8: (Completeness) Consider a discrete
workspace satisfying Assumption a team of n robots
of m types and a valid specification ¢ € LTL". Assume
also that there exists a path 7 = 7P¢[7*U1]“ that induces a
restricted accepting run p = pP[p™f]«
[vnm,...,v;rior,vaccep[]“ in the pre-processed NBA A4 and
satisfies Assumption Then, our method can find a robot
path 7 = 7P[7]« that satisfies the specification ¢.

The key idea in the proof of Theorem [6.8] is to first show
that, feasible paths still exist in A, . (see Proposition
and then use this fact to show feasibility of the MILP and
GMRPP problems. The detailed proof can be found in Ap-
pendix C in [40]. We emphasize that the completeness result
in Theorem [6.8 is ensured for LTL rather than LTLX
formulas. This is because task allocations captured by induced
atomic propositions in the prefix part may not lead to feasible
allocations in the suffix part. However, when the LTLX
specification can be satisfied by finite-length paths, such as
co-safe LTL [46] or LTL; [47], then our method is complete
also for LTLX specifications.

Remark 6.9: The path 7 constructed by our approach may
not satisfy Assumption that requires that robots close
their suffix loops at the same time the NBA A, transitions to
Vaccept- HOwever, in our method, when the NBA A, transitions
tO Vaccept, ONly those robots involved in the completion of the
last subtask in the prefix part return to regions corresponding
to their initial locations. Thereafter, trajectories are closed.

The soundness follows directly Theorem [6.8]

Corollary 6.10: (Soundness) Consider a discrete
workspace, a team of n robots of m types and a valid
specification ¢ € LTLX. Then, the path returned by the
GMRPP satisfies the specification ¢. Also, the specific
implementation of the GMRPP is not important.

= V0, - - - Uprior, Vaccept

VII. NUMERICAL EXPERIMENTS

In this section we present three case studies, implemented
in Python 3.6.3 on a computer with 2.3 GHz Intel Core i5
and 8G RAM, that illustrate the correctness and scalability
of our method. The MILP is solved using Gurobi [48]] with
big-M M.« = 10°. First, we compare with the optimal
solution to examine the suboptimality of our proposed method
when the NBA can be captured by one poset (thus, only
one solution). Second, we generate multiple solutions for

TABLE 1
STATISTICS ON THE OPTIMAL COST AND SOLUTIONS

task I NoCol+Seq Col+Sim

cost horizon cost horizon
36.0+£5.1 364453 (35) 23.9+4.1 38.845.5 19.6+2.8
254428 28.6+3.1 (8) 29.2+29 28.64+3.1 29.2429

Case Study I: Column “NoCol+Seq” represents the case where collision avoidance is
ignored and robots move sequentially, and column “Col+4Sim” incorporates collision
avoidance and simultaneous execution. The notation J* denotes the optimal cost without
considering collision avoidance. The number of trials out of 50 trials where the cost cost
is equivalent to the optimal cost J* are shown inside the parentheses.

specifications with multiple posets, and compare the cost of
the first solution corresponding to the widest poset to that
of the subsequent solutions. We observe that the quality of
the first solution obtained for the widest poset is generally
very good. Finally, we compare our method to the approach
proposed in [39]] for large workspaces and numbers of robots
and show that our method outperforms the approach in [39]
in terms of optimality and scalability. We emphasize that the
sets of restricted accepting runs of all specifications ¢1 — ¢19
considered in the following simulations, are nonempty, which
shows that this assumption is not restrictive in practice.

A. Case study I: Suboptimality

In this case study, we examine the quality of the paths
constructed for the two tasks in the Example|l} Observe that in
Fig. a unique poset corresponds to the sub-NBA A_ ...
for task A similar observation can be made for the sub-
NBA A .« in Fig. for task In the workspace shown
in Fig. 0] we randomly generate the initial locations of all
robots inside label-free cells. To measure the suboptmality of
our solution in terms of path length (travelled distance), we
use brute-force search to find the optimal cost.

Next, given the same randomly generated initial robot loca-
tions, we implement our proposed method in the following two
different ways. First, we implement GMRPP without collision
avoidance and with sequential execution (see Appendix B-B1
in [40]). Using sequential execution, only robots participating
in the subtask under consideration are assigned target regions
and the rest of the robots just move out of their way, whereas
in the case of the simultaneous execution (see Appendix B-
D2 in [40]), multiple subtasks can be undertaken at the
same time, and robots that do not participate in the current
subtasks simultaneously move towards their target points for
subsequent subtasks. Second, we implement GMRPP with
collision avoidance and with simultaneous execution. Both
implementations employ the full execution (see Appendix B-
B1 in [40]), in which all robots are allowed to move. Note
that in the partial execution (see Appendix B-D3 in [40]),
only necessary robots participating in the current subtask are
allowed to move and the remaining robots are treated as
obstacles. Table [[|shows statistical results on the path costs and
path time horizons (number of time stamps), averaged over 50
trials. For task [(1)|, the MILP for the high-level plan includes
105 variables and 183 constraints; for task it includes 33
variables and 61 constraints to find the prefix plan and 94
variables and 162 constraints to find the suffix plan.

Without considering collision avoidance, the cost is close
to the optimal cost, especially for task [(1)| that only requires
paths of finite length. In 35 out of 50 trials, our method can

identify the exact optimal solutions. For task|[(iD)] the additional
cost arises from planning separately for the prefix and suffix
parts. In the prefix part, the robot can visit the cell in region
{5 that is the closest to its initial location, however, it may
incur additional cost to return to this cell in the suffix part.
The costs when considering collision avoidance are also close
to the optimal cost, indicating that often robots follow the
shortest path. As for the path horizon, observe that, for task
simultaneous execution results in shorter horizons since one
robot of type 2 can move towards ¢4 while two robots of type
1 leave from their initial locations for ¢s. For task the
horizon remains almost the same, since corresponding subtasks
cannot be executed in parallel by the same robot.

B. Case study II: Quality of the first solution

Common to two specifications above is that the sub-NBA
A sk for the prefix and suffix parts can be concisely
captured by one poset, which may not be the case for most
specifications. Here, we consider various specifications that
can produce many posets and examine the quality of the
first solutions obtained for the widest poset by comparing to
subsequent solutions obtained for subsequent posets. We use
the same workspace and robot team as in Example |1} The
considered specifications are as follows:

¢3 =00(r21 A O(r51 A O(m3)1 A OT31))),

¢a =00(r51 A O3) AD(RTT = O] Ul) AD-m;

¢5 =O(niy A O(rs Uns 1)) ADO(r 5 A OnY5),

b6 =001 v ap1) ADOmT T ADO(ms 5 V 75) AO=my AD=7; 5,
¢r =00(n1 5 A O(O=771 5)) ATO(r] 1 A O(O=mT 1)) A O(r5 1 A s o),
¢s =00(m55 A O(r35 AOTS3)) A~y y Unyy A=my , Uny's

A (@0xy y v OO ,).

These specifications involve various operators and are rep-
resentative of commonly used complex tasks in robotics ap-
plications. For example, ¢3 can capture surveillance and data
gathering tasks [4], and the subformula DQ(TF?:} v W?%) in
¢¢ can specify intermittent connectivity tasks where robots are
required to meet at communication regions infinitely often [5].
Furthermore, subformula |:|—\7T§72 in ¢¢ can be used to repre-
sent collision avoidance among robots and —7% 5 U ng; in ¢g
can prioritize certain subtasks to others. ' '

We executed our method 20 times for each specification. In
each trial, we randomly generated initial robot locations inside
the label-free cells such that no two robots occupy the same
cell. We considered collision avoidance, as well as full and
simultaneous execution. In Table [lI} we report the number of
pairs of initial and accepting vertices in the NBA A, before
pre-processing, the size (number of vertices and edges) of the
NBA A4 before and after pre-processing, and the size of the
sub-NBA A_, . for the prefix and suffix parts from which the
first solutions are obtained. The size (number of variables and
constraints) of the MILP for the prefix and suffix part of the
first solution is also displayedﬂ We terminate our method until
all solutions or the first 10 solutions are generated, whichever

IThe size of the MILP differs for different solutions since they may be
generated from different posets of subtasks. We only report the results for
the first solution since we aim to examine the quality of the first solution.

TABLE II
RESULTS FOR SPECIFICATIONS ¢3 — ¢8

A Noj — N.. . —5 _

Tk D Al g g v [M= =2 =

‘ cost time(sec) cost time(sec) cost time(sec)
03 8 (20, 142) (20, 49) 3,2) 5,9 (45,78) (276, 397) | 66.4+4.7 1.740.2 — — — —
4 4 (10, 57) (10, 31) 3,2) 3.3) (45,78) (130, 210) | 61.4+4.8 14402 — — — —
o5 2 (11, 31) (11,25) (10, 19) 3,3) (78, 141) (76, 142) | 17.945.7 0.5+0.1 17.9457 2.2+0.7 — —
o6 1 4,9) 4, 8) 4,5) 4, 5) (117, 203) (204, 308) | 33.3+7.1 1.2+0.5 30.845.7 32+1.1 30.8457 45+1.5
o7 3 (24, 140) (24, 104) (22,57) (9, 18) | (124, 194) (93, 164) | 45447.1 25+03 45447.1 29+03 454+7.1 3.9+0.3
0N 4 (15, 83) (15,41 (8, 13) (8, 14) | (120, 210) (201, 325) | 74.0+£6.2 1.64+0.2 74.0+6.2 8.7+0.5 74.0+6.2 224+1.2

Case Study II: Ny is the number of pairs of initial and accepting vertices, |Al, [Ag|, [A e | and | A= | are the size of the NBA before and after

subtask subtask

pre-processing, for the prefix and suffix parts from which the first solutions are obtained, respectively. MILPP and MILPf are the size of MILP of the first
solution. The symbol “—” means that only one solution found for ¢3 and ¢4, and less than or equal to 5 solutions found for ¢5.

Fig. 10. Grid world from [39].

comes first. We record the smallest cost and runtimes achieved
by the first solution, after the first 5 and 10 solutions.

In Table the size of sub-NBA A_, . is dramatically
reduced compared to the size of NBA before pre-processing,
especially for specifications ¢3, ¢7 and ¢g, considerably re-
ducing the computation times. It takes about 20 seconds to get
10 solutions for specification ¢g. Except for specification ¢,
the first solution returned by our method is also the lowest cost
solution. For specification ¢g, the best solution corresponds to
one of the first 5 posets. This is because our optimization-
based method sorts the set of posets in part according to
their height so that posets with smaller numbers of subtasks
are considered first (see Section [[V-C). Therefore, we can
terminate our method only after a few solutions have been
obtained, which is especially important when the complexity
of the planing problem increases.

C. Case study III: Scalability

In this case study, we examine the scalability with respect
to the size of the workspace and the number of robots.

1) Comparison with the BMC method: Similar to our
method, [39] also adopts a hierarchical framework, which
improves the scalability of the methods in [35) [36] that focus
on feasibility of control synthesis over LTL?. For the purpose
of comparison, we borrow the workspace used in [39], a 30-
by-30 grid world containing 6 regions ¢;,¢ = 1,...,6; shown
in Fig. At each trial, 20% of cells are randomly selected as
obstacles. Consider a team of n robots of the same type whose
initial locations are randomly sampled inside region ¢;. The
specification is given by [39]:

P9 = D<>7T72L,1 A DQWZ/zJ A DOWi/zJ A _‘7711,1 u (W?,l A 77(13,1)‘

The size of the NBA is independent from the number of
robots. The NBA A, has one pair of initial and accepting
vertices, 5 vertices and 10 edges (excluding self-loops). The
sub-NBA A_, ... for the prefix part has 5 vertices and 5 edges
and for the suffix part has 4 vertices and 5 edges. We employ

TABLE III
RESULTS WITH RESPECT TO THE NUMBER OF ROBOTS

n Our method BMC method

cost time(sec) cost time(sec)
4 270.6+4.4 62.4+1.4 944.4421.2 76.5+13.8
8 513.0+30.2 124.949.2 1819.0+149.9 334.9+153.9
12 794.6+11.1 187.449.1 2217.0+163.8 704.3+178.0
16 1080.24+14.7 502.0+£225.4 2725.8+149.2 1135.84+123.7

30 2509.4£168.9 4072.1+985.4 — —

the full and simultaneous execution. We record runtimes and
cost of the first feasible solutions, where the cost is the sum of
the cost of the prefix and suffix parts. Both methods consider
collision avoidance. The horizon increases by 10 when no
solution exists for the GMRPP, until the considered horizon
exceeds the initial horizon by 100. The work [39] can address
robots of the same type. The statistical results averaged over
10 trials are shown in Table For n = 30 robots, the
MILP to find the prefix plan includes 89179 variables and
91244 constraints and the MILP to find the suffix plan includes
112519 variables and 115482 constraints.

Observe in Table that our method outperforms the
BMC method both in terms of runtimes and optimality of
the solutions. Specifically, as the number of robots increases,
the runtime of our method is about half the runtime of the
BMC method but the cost returned by our method is about
1/3 of the cost of the solutions obtained using the BMC
method. The reason is that we optimize the cost at both the
high level and the low level, while the BMC method only
considers feasibility. For n = 30 robots, the BMC method
did not produce a solution within 2 hours. Furthermore, the
efficiency of the low-level path planner has significant impact
on the runtime. In our method, the number of times that
the path planner is invoked is the same or smaller than
the number of subtasks in the simple path extracted from
the high-level plan. On the other hand, the BMC method
abstracts the given environment by aggregating states with the
same observation, where transitions between abstract states are
defined by whether they share the same boundary. Then, each
transition in the high-level plan obtained by the BMC method
is converted into one instance of multi-robot path planning
problem. Obviously, the number of transitions in the BMC
method is larger than the number of subtasks in our method,
since each subtask may take multiple transitions.

2) Full vs. partial GMRPP execution: We use the same
workspace as in Fig.[I0]and consider a team of n homogeneous
robots that are subject to the specification:

TABLE IV
RESULTS WITH RESPECT TO THE NUMBER OF ROBOTS.

Full execution Partial execution

cost time(sec) cost time(sec)
4 181.4+17.7 89.5+5.0 180.4+20.1 65.8+10.1
8 356.6+16.0 198.9+12.3 354.2+15.2 129.3+4.9
12 573.5+63.3 350.7+£25.4 554.3+49.4 192.5+10.4
16 774.24£59.0 561.0+44.4 763.0+£50.7 278.9+8.9
32 1560.4+160.7 1886.8+696.0 1524.6+30.6* 778.1+134.9

* 3 out of 10 trials failed.

41

2,1
¢10= 0(m31 V 7§ 1) ADO(m,)y AOm s) A0, gy AD-mg 4.

Before pre-processing, there are two pairs of initial and
accepting vertices in the NBA 44 that contains 8 vertices and
27 edges. After pre-processing, the NBA A, has 8 vertices and
20 edges. For the first pair of initial and accepting vertices, the
sub-NBA A_, ... associated with the prefix part has 7 vertices
and 10 edges, and the sub-NBA associated with suffix part
has 5 vertices and 7 edges. We compare the performance of
our method for the full and partial execution in the GMRPP
problem and for an increasing number of robots up to 32.
The results averaged over 10 trials are shown in Table
For n = 32 robots, the MILP to find the prefix plan includes
41428 variables and 42533 constraints and the MILP to find
the suffix plan includes 78625 variables and 81200 constraints.
It can be seen that our method with partial execution in the
GMRPP problem takes less time than with full execution.
This advantage becomes more significant as the number of
robots increases since in this case, a larger number of robots
that do not participate in the current subtask can remain idle
and can be treated as obstacles in the GMRPP. For example,
the subtask requiring that at least 3 robots meet at region
U5 or lg, only involves 3 robots no matter how large the
robot team is. On the other hand, the full execution of the
GMRPP problem results in slightly larger cost which suggests
that even though all robots are allowed to move, those robots
that do not participate in the specific subtask rarely move
because our method optimizes the cost. Observe that for the
partial execution and for 32 robots, no solutions are generated
in 3 out of 10 trials. This is due to the fact that robots
treated as obstacles affect the obstacle-free workspace and,
therefore, may make the GMRPP infeasible. Thus, the partial
execution of the GMRPP problem can be more effective in
large workspaces with few robots, where a few idle robots do
not significantly alter the obstacle-free environment.

VIII. CONCLUSION

In this work, we consider the problem of allocating tasks,
expressed as global LTL specifications, to teams of hetero-
geneous mobile robots. We proposed a hierarchical approach
to solve this problem that first solves an MILP to obtain a
high-level time-stamped allocation of robots to tasks and then
formulates a sequence of multi-robot path planning problems
to obtain the low-level executable paths. We proved that, with
mild assumptions, the proposed method is complete and we
provided extensive simulations that showed that our method
outperforms the state-of-the-art BMC method in terms of op-
timality and scalability. Scalability of our method is primarily
due to a clever relaxation of the NBA that captures the LTL

specification, that involves removing the negative literals. This
relaxation is motivated by “lazy collision checking” methods
for point-to-point navigation, and significantly simplifies the
high-level planning problem as constraint violation is not
considered during planning and instead it is only checked
during execution when needed. To the best of our knowledge,
this is the first time that “lazy collision checking” methods are
used and shown to be effective for high-level planning tasks.

REFERENCES

[1] S. M. LaValle, Planning algorithms.
press, 2006.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT
press Cambridge, 2008.

[3] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for mobile robots,” in IEEE International
Conference on Robotics and Automation (ICRA), Barcelona,
Spain, 2005, pp. 2020-2025.

[4] M. Guo and M. M. Zavlanos, “Distributed data gathering with
buffer constraints and intermittent communication,” in 2017
IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, 2017, pp. 279-284.

[5] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent con-
nectivity control of mobile robot networks,” IEEE Transactions
on Automatic Control, vol. 62, no. 7, pp. 3109-3121, 2017.

[6] K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos,
M. Schwager, and C. Belta, “Persistent surveillance for un-
manned aerial vehicles subject to charging and temporal logic
constraints,” Autonomous Robots, vol. 40, no. 8, pp. 1363-1378,
2016.

[7] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic
systems: A survey,” ACM Computing Surveys (CSUR), vol. 52,
no. 5, pp. 141, 2019.

[8] S. L. Smith, J. TGmov4, C. Belta, and D. Rus, “Optimal path
planning under temporal logic constraints,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 3288-3293.

[9] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Op-

timality and robustness in multi-robot path planning with tem-

poral logic constraints,” The International Journal of Robotics

Research, vol. 32, no. 8, pp. 889-911, 2013.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfigura-

tion under local LTL specifications,” The International Journal

of Robotics Research, vol. 34, no. 2, pp. 218-235, 2015.

G. Séanchez and J.-C. Latombe, “A single-query bi-directional

probabilistic roadmap planner with lazy collision checking,” in

Robotics research. Springer, 2003, pp. 403—417.

D. Bredstrom and M. Ronnqvist, “Combined vehicle routing

and scheduling with temporal precedence and synchronization

constraints,” European journal of operational research, vol. 191,

no. 1, pp. 19-31, 2008.

J. Tumova and D. V. Dimarogonas, “Multi-agent planning un-

der local LTL specifications and event-based synchronization,”

Automatica, vol. 70, pp. 239-248, 2016.

I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A.

Seshia, “Automated composition of motion primitives for multi-

robot systems from safe LTL specifications,” in 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

IEEE, 2014, pp. 1525-1532.

Y. Kantaros and M. M. Zavlanos, “Temporal logic optimal

control for large-scale multi-robot systems: 10%%° states and

beyond,” in 2018 IEEE Conference on Decision and Control

(CDC). IEEE, 2018, pp. 2519-2524.

X. Luo, Y. Kantaros, and M. M. Zavlanos, “An abstraction-free

method for multirobot temporal logic optimal control synthesis,”

IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1487-1507,

2021.

Cambridge university

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

M. Kloetzer, X. C. Ding, and C. Belta, “Multi-robot deployment
from LTL specifications with reduced communication,” in 2011
50th IEEE Conference on Decision and Control and European
Control Conference. 1EEE, 2011, pp. 4867-4872.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear
temporal logic motion planning for teams of underactuated
robots using satisfiability modulo convex programming,” in
2017 IEEE 56th Annual Conference on Decision and Control
(CDC). 1IEEE, 2017, pp. 1132-1137.

S. Moarref and H. Kress-Gazit, “Decentralized control of
robotic swarms from high-level temporal logic specifications,”
in 2017 International Symposium on Multi-robot and Multi-
agent Systems (MRS). 1EEE, 2017, pp. 17-23.

B. Lacerda and P. U. Lima, “Petri net based multi-robot task
coordination from temporal logic specifications,” Robotics and
Autonomous Systems, vol. 122, p. 103289, 2019.

J. Tumova and D. V. Dimarogonas, “Decomposition of multi-
agent planning under distributed motion and task LTL specifica-
tions,” in 2015 54th IEEE Conference on Decision and Control
(CDC). 1IEEE, 2015, pp. 7448-7453.

Y. Kantaros and M. M. Zavlanos, “Distributed communication-
aware coverage control by mobile sensor networks,” Automat-
ica, vol. 63, pp. 209-220, 2016.

X. Luo and M. Zavlanos, “Transfer planning for temporal logic
tasks,” in Proc. of the 58th IEEE Conference on Decision and
Control, France, Nice, 2019.

A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier, and
S. A. Mcllraith, “Non-deterministic planning with temporally
extended goals: Ltl over finite and infinite traces.” in AAAI,
2017, pp. 3716-3724.

P. Schillinger, M. Biirger, and D. V. Dimarogonas, “Hierarchical
LTL-task mdps for multi-agent coordination through auctioning
and learning,” The International Journal of Robotics Research,
2019.

S. Karaman and E. Frazzoli, “Linear temporal logic vehicle
routing with applications to multi-uav mission planning,” In-
ternational Journal of Robust and Nonlinear Control, vol. 21,
no. 12, pp. 1372-1395, 2011.

Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal
approach to the deployment of distributed robotic teams,” IEEE
Transactions on Robotics, vol. 28, no. 1, pp. 158-171, 2011.
M. Kloetzer and C. Mahulea, “Path planning for robotic teams
based on LTL specifications and petri net models,” Discrete
Event Dynamic Systems, vol. 30, no. 1, pp. 55-79, 2020.

P. Schillinger, M. Biirger, and D. V. Dimarogonas, “Simulta-
neous task allocation and planning for temporal logic goals in
heterogeneous multi-robot systems,” The International Journal
of Robotics Research, vol. 37, no. 7, pp. 818-838, 2018.

F. Faruq, D. Parker, B. Laccrda, and N. Hawes, “Simultane-
ous task allocation and planning under uncertainty,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3559-3564.

C. Banks, S. Wilson, S. Coogan, and M. Egerstedt, “Multi-
agent task allocation using cross-entropy temporal logic opti-
mization,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2020, pp. 7712-7718.

Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal
control synthesis for multirobot systems under global temporal
tasks,” IEEE Transactions on Automatic Control, vol. 64, no. 5,
pp. 1916-1931, 2018.

——, “Stylus*: A temporal logic optimal control synthesis al-
gorithm for large-scale multi-robot systems,” The International
Journal of Robotics Research, vol. 39, no. 7, pp. 812-836, 2020.
A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An
opensource tool for symbolic model checking,” in International
Conference on Computer Aided Verification. Springer, 2002,
pp- 359-364.

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

(45]

(46]

[47]

(48]

20

Y. E. Sahin, P. Nilsson, and N. Ozay, “Synchronous and asyn-
chronous multi-agent coordination with cLTL+ constraints,” in
2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, 2017, pp. 335-342.

——, “Multirobot coordination with counting temporal logics,”
IEEE Transactions on Robotics, 2019.

A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan,
“Linear encodings of bounded LTL model checking,” Logical
Methods in Computer Science, vol. 2, no. 5:5, pp. 1-64, 2006.
A. M. Jones, K. Leahy, C. L. Vasile, S. Sadradinni, Z. Serlin,
R. Tron, and C. Belta, “Scalable and Robust Deployment of
Heterogenenous Teams from Temporal Logic Specifications,” in
International Symposium on Robotics Research (ISRR), Hanoi,
Vietnam, October 2019.

Y. E. Sahin, N. Ozay, and S. Tripakis, “Multi-agent coordination
subject to counting constraints: A hierarchical approach,” in
Distributed Autonomous Robotic Systems. Springer, 2019, pp.
265-281.

X. Luo and M. M. Zavlanos, “Temporal logic task alloca-
tion in heterogeneous multi-robot systems,” arXiv preprint
arXiv:2101.05694, 2021.

M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Ist Symposium in Logic in
Computer Science (LICS). 1EEE Computer Society, 1986.

L. S. Heath and A. K. Nema, “The poset cover problem,” Open
Journal of Discrete Mathematics, vol. 3, no. 03, p. 101, 2013.
E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy
for task allocation problems with temporal and ordering con-
straints,” Robotics and Autonomous Systems, vol. 90, pp. 55-70,
2017.

P. Gastin and D. Oddoux, “Fast LTL to biichi automata
translation,” in International Conference on Computer Aided
Verification. Springer, 2001, pp. 53-65.

A. Stefanescu, “Automatic synthesis of distributed transition
systems,” 2006.

O. Kupferman and M. Y. Vardi, “Model checking of safety
properties,” Formal Methods in System Design, vol. 19, no. 3,
pp. 291-314, 2001.

G. De Giacomo and M. Y. Vardi, “Linear temporal logic
and linear dynamic logic on finite traces,” in Twenty-Third
International Joint Conference on Artificial Intelligence, 2013.
L. Gurobi Optimization, “Gurobi optimizer reference manual,”
2018. [Online]. Available: http://www.gurobi.com

Xusheng Luo (S’19) received the B.Eng. and
M.S.E. degrees in aerospace engineering from the
Harbin Institute of Technology, Harbin, China, in
2015 and 2017, respectively, and the Ph.D. degree
in mechanical engineering from Duke University,
Durham, NC, in 2020. His research interest focuses
on the formal control synthesis under high-level
specifications with applications in robotics.

Michael M. Zavlanos (S’05M’09SM’19) received
the Diploma in mechanical engineering from the
National Technical University of Athens, Greece, in
2002, and the M.S.E. and Ph.D. degrees in electrical
and systems engineering from the University of
Pennsylvania, Philadelphia, PA, in 2005 and 2008,
respectively. He is currently an Associate Professor
in the Department of Mechanical Engineering and
Materials Science at Duke University, Durham, NC.
His research focuses on control theory, optimization,
and learning and, in particular, autonomous systems

and robotics, networked and distributed control systems, and cyber-physical
systems. Dr. Zavlanos is a recipient of various awards including the 2014
ONR YIP Award and the 2011 NSF CAREER Award.

http://www.gurobi.com

	Introduction
	Related work
	Contributions

	Preliminaries
	Linear temporal logic
	Partially ordered set

	Problem Definition
	Transition system
	Task specification
	Problem definition
	Assumptions
	Workspace
	Nondeterministic Bchi Automaton (NBA)
	Robot paths

	Outline of the proposed method

	Extraction of Subtasks from the NBA and Inferring their Temporal Order
	Pruning and relaxation of the NBA
	Extraction of sub-NBA Asubtask from Arelax
	Sorting the pairs of initial and accepting vertices by path length
	Extraction of the sub-NBA Asubtask
	Pruning the sub-NBA Asubtask

	Inferring the temporal order between subtasks in Asubtask-

	Design of High-Level Task Allocation Plans and Low-Level Executable Paths
	Construction of the prefix routing graph
	Construction of the vertex set
	Construction of the edge set

	Construction of the robot prefix plans
	Time axis
	High-level robot plans

	Design of low-level prefix paths
	Obtaining the best prefix-suffix path

	Theoretical Analysis
	Notation
	Completeness and soundness

	Numerical Experiments
	Case study i: Suboptimality
	Case study ii: Quality of the first solution
	Case study iii: Scalability
	Comparison with the BMC method
	Full vs. partial GMRPP execution

	Conclusion
	Biographies
	Xusheng Luo
	Michael M. Zavlanos

